中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (9): 1789-1795.doi: 10.12307/2025.139

• 骨与关节生物力学Bone and joint biomechanics • 上一篇    下一篇

基于OpenSim预测青少年跖屈肌无力的下肢生物力学行为

付恩洪,杨  行,梁  成,张小刚,张亚丽,靳忠民   

  1. 西南交通大学,机械工程学院,四川省成都市   610031
  • 收稿日期:2023-12-12 接受日期:2024-02-22 出版日期:2025-03-28 发布日期:2024-10-09
  • 通讯作者: 张小刚,博士,副教授,西南交通大学,机械工程学院,四川省成都市 610031
  • 作者简介:付恩洪,男,1998年生,四川省自贡市人,汉族,西南交通大学在读硕士,主要从事骨骼肌肉系统多体动力学研究。
  • 基金资助:
    国家自然科学基金委员会面上项目(52375207),项目负责人:张小刚;国家自然科学基金委员会重点项目(52035012),项目负责人:靳忠民;中央高校基本科研业务费(2682023ZTPY052) ,项目负责人:张亚丽

OpenSim-based prediction of lower-limb biomechanical behavior in adolescents with plantarflexor weakness

Fu Enhong, Yang Hang, Liang Cheng, Zhang Xiaogang, Zhang Yali, Jin Zhongmin   

  1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
  • Received:2023-12-12 Accepted:2024-02-22 Online:2025-03-28 Published:2024-10-09
  • Contact: Zhang Xiaogang, MD, Associate professor, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
  • About author:Fu Enhong, Master candidate, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
  • Supported by:
    General Project of National Natural Science Foundation of China, No. 52375207 (to ZXG); Key Project of National Natural Science Foundation of China, No. 52035012 (to JZM); Basic Research Business Fees for Central Universities, No. 2682023ZTPY052 (to ZYL)

摘要:


文题释义

跖屈肌无力:由于神经肌肉间信号传递障碍导致跖屈肌肌张力低下,处于过度松弛状态。跖屈肌主要包括小腿三头肌(浅层的腓肠肌内外侧头、深层的比目鱼肌)、趾长屈肌、拇长屈肌和胫骨后肌,此次研究仅关注跖屈运动过程中起主要作用的腓肠肌和比目鱼肌两块肌肉。
生物力学预测:基于步态数据的逆动力学方法能够用于解析步态数据背后的生物力学信息(特指与骨骼肌肉相关的生物力学参数,如“关节角”“关节力矩”“肌肉激活”等),而基于最优控制理论的预测模拟是求解受约束的一个或多个目标函数最小化(或最大化)来实现步态预测;该方法可以在不依赖实验数据时,探索肌肉骨骼缺陷与异常步态间的因果关系,已被用于预测在人体不同场景下的步态适应性和假体优化设计。

摘要
背景:跖屈肌无力是痉挛型脑瘫和腓骨肌萎缩症患者的常见肌肉缺陷,临床上会表现出异常步态,而跖屈肌无力与异常步态间的关系尚不明晰。
目的:探讨跖屈肌无力单因素作用时对下肢生物力学行为的影响,以揭示跖屈肌无力诱发异常步态的机制,为跖屈肌无力患者康复训练提供指导。
方法:基于OpenSim Moco建立矢状面内骨肌多体动力学预测框架,预测正常受试者下肢关节角和肌肉激活变化,结合实验数据逆运动学和肌电图激活时间,验证框架有效性。减小等距肌肉力进行跖屈肌无力建模并将预测得到的下肢关节角、关节力矩和肌肉能量消耗,与正常受试者对比,以分析跖屈肌无力对下肢生物力学的影响。
结果与结论:①基于Moco的预测框架较真实地预测了正常受试者步行过程中的下肢生物力学变化(关节角归一化相关系数≥0.73,均方根误差≤7.10°);②跖屈肌无力时模型采用小步幅且支撑相上升的“脚跟行走”步态,当跖屈肌无力达到80%时,肌肉能量消耗为5.691 4 J/(kg·m),

腓肠肌和比目鱼肌激活度最大分别为0.72,0.53,可能致使跖屈肌无力患者步行时更易疲劳;③当跖屈肌无力超过40%时,肌肉能量消耗显著升高;跖屈肌无力超过60%时,下肢关节角和关节力矩出现较明显恶化,说明跖屈肌无力对步态的影响可能存在“阈值”,这或许对应于医护人员进行临床干预的时间点。


中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 下肢, 跖屈肌无力, 生物力学, 步态, 预测, 肌肉能量消耗, 肌肉激活, OpenSim Moco

Abstract: BACKGROUND: The plantarflexor weakness is a common muscle defect in patients with spastic cerebral palsy and Charcot-Marie-Tooth, which clinically manifests abnormal gaits, and the relationship between plantarflexor weakness and abnormal gaits is unclear.
OBJECTIVE: To explore the biomechanical behavior of the lower limb under the action of a single factor of plantarflexor weakness to reveal the mechanism of abnormal gait induced by plantarflexor weakness and to provide guidance for the rehabilitation training of patients with plantarflexor weakness. 
METHODS: A predictive framework of musculoskeletal multibody dynamics in the sagittal plane was established based on OpenSim Moco to predict lower limb joint angles and muscle activation changes during walking in normal subjects. The validity of the framework was verified by combining the inverse kinematics and electromyogram activation time of the experimental data. Reduced isometric muscle forces were used to model plantarflexor weakness and to compare predicted lower extremity joint angles, joint moments, and muscle energy expenditure with normal subjects to analyze the effects of plantarflexor weakness on lower extremity biomechanics.

RESULTS AND CONCLUSION: (1) The Moco-based prediction framework realistically predicted the biomechanical changes of the lower limbs during walking in normal subjects (joint angles: normalized correlation coefficient ≥ 0.73, root mean square error ≤ 7.10°). (2) The musculoskeletal model used a small stride support phase to increase the “heel-walking” gait during plantarflexor weakness. When the plantarflexor weakness reached 80%, the muscle energy expenditure was 5.691 4 J/kg/m, and the maximum activation levels of the gastrocnemius and soleus muscles were 0.72 and 0.53, which might cause the plantarflexor weakness patients to be more prone to fatigue when walking. (3) Muscle energy expenditure was significantly higher when the weakness of plantarflexors exceeded 40%, and the joint angles and moments of the lower limbs deteriorated significantly when the weakness of plantarflexors exceeded 60%, suggesting that there may be a “threshold” for the effect of plantarflexor weakness on gait, which may correspond to the point at which health care professionals should intervene in the clinical setting.


中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

Key words: lower extremity, plantarflexor weakness, biomechanics, gait, prediction, muscle energy expenditure, muscle activation, OpenSim Moco

中图分类号: