[1] WATERVAL NFJ, VAN DER KROGT MM, VEERKAMP K, et al. The interaction between muscle pathophysiology, body mass, walking speed and ankle foot orthosis stiffness on walking energy cost: A predictive simulation study. J Neuro Eng Rehabil. 2023;20(1):117.
[2] 王正义, 俞光荣, 张建中, 等. 腓骨肌萎缩症外科治疗专家共识[J].中华骨与关节外科杂志,2022,15(9):641-651.
[3] 穆晓红, 李筱叶. 痉挛型脑性瘫痪外科治疗专家共识[J]. 中国矫形外科杂志,2020,28(1):77-81.
[4] KUSKA EC, MEHRABI N, SCHWARTZ MH, et al. Number of synergies impacts sensitivity of gait to weakness and contracture. J Biomech. 2022;134:111012.
[5] NOBLE JJ, FRY NR, LEWIS AP, et al. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain Dev. 2014;36(4):294-300.
[6] HANDSFIELD GG, MEYER CH, HART JM, et al. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech. 2014;47(3):631-638.
[7] SUTHERLAND DH, COOPER L, DANIEL D. The role of the ankle plantar flexors in normal walking. JBJS. 1980;62(3):354-363.
[8] STEELE KM, VAN DER KROGT MM, SCHWARTZ MH, et al. How much muscle strength is required to walk in a crouch gait? J Biomech. 2012; 45(15):2564-2569.
[9] FOX AS, CARTY CP, MODENESE L, et al. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children. Gait Posture. 2018;61:169-175.
[10] HANDFORD ML, SRINIVASAN M. Robotic lower limb prosthesis design through simultaneous computer optimizations of human and prosthesis costs. Sci Rep. 2016;6(1):19983.
[11] SONG S, GEYER H. Predictive neuromechanical simulations indicate why walking performance declines with ageing. J Physiol. 2018;596(7): 1199-1210.
[12] FEBRER-NAFRíA M, NASR A, EZATI M, et al. Predictive multibody dynamic simulation of human neuromusculoskeletal systems: A review. Multibody Sys Dyn. 2022;58(3-4):299-339.
[13] ONG CF, GEIJTENBEEK T, HICKS JL, et al. Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations. PLoS Comput Biol. 2019;15(10): e1006993.
[14] GEIJTENBEEK T. Scone: Open source software for predictive simulation of biological motion. J Open Source Softw. 2019;4(38):11421.
[15] ELDER GCB, KIRK J, STEWART G, et al. Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol. 2003; 45(8):542-550.
[16] DEMBIA CL, BIANCO NA, FALISSE A, et al. Opensim moco: Musculoskeletal optimal control. PLoS Comput Biol. 2020;16(12):e1008493.
[17] HORENSTEIN RE, SHEFELBINE SJ, MUESKE NM, et al. An approach for determining quantitative measures for bone volume and bone mass in the pediatric spina bifida population. Clin Biomech. 2015;30(7): 748-754.
[18] LEE MR, HICKS JL, WREN TAL, et al. Independently ambulatory children with spina bifida experience near-typical knee and ankle joint moments and forces during walking. Gait Posture. 2023;99:1-8.
[19] DELP SL, ANDERSON FC, ARNOLD AS, et al. Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940-1950.
[20] BUCHANAN TS, LLOYD DG, MANAL K, et al. Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command. J Appl Biomech. 2004;20(4):367-395.
[21] RAJAGOPAL A, DEMBIA CL, DEMERS MS, et al. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans Biomed Eng. 2016;63(10):2068-2079.
[22] KELLY M. An introduction to trajectory optimization: How to do your own direct collocation. Siam Rev. 2017;59(4):849-904.
[23] SABIR Z. Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion. Eur Phys J Plus. 2022;137(5): 638.
[24] VEERKAMP K, WATERVAL NFJ, GEIJTENBEEK T, et al. Evaluating cost function criteria in predicting healthy gait. J Biomech. 2021;123: 110530.
[25] BHARGAVA LJ, PANDY MG, ANDERSON FC. A phenomenological model for estimating metabolic energy consumption in muscle contraction. J Biomech. 2004;37(1): 81-88.
[26] JACQUELIN JM, PERRY M. Gait analysis: Normal and pathological function. New Jersey: SLACK. 2010;29(4):137-138.
[27] WATERVAL NFJ, VEERKAMP K, GEIJTENBEEK T, et al. Validation of forward simulations to predict the effects of bilateral plantarflexor weakness on gait. Gait Posture. 2021;87:33-42.
[28] NIKOO A, UCHIDA TK. Be careful what you wish for: Cost function sensitivity in predictive simulations for assistive device design. Symmetry-Basel. 2022;14(12):2534.
[29] NIEUWENHUYS A, OUNPUU S, VAN CAMPENHOUT A, et al. Identification of joint patterns during gait in children with cerebral palsy: A delphi consensus study. Dev Med Child Neurol. 2016;58(3): 306-313.
[30] AWAD LN, HSIAO H, BINDER-MACLEOD SA. Central drive to the paretic ankle plantarflexors affects the relationship between propulsion and walking speed after stroke. J Neurol Phys Ther. 2020;44(1):42-48.
[31] FERRARO F, CALAFIORE D, CURCI C, et al. Effects of intensive rehabilitation on functioning in patients with mild and moderate charcot-marie-tooth disease: A real-practice retrospective study. Neurol Sci. 2023;45(1):289-297.
[32] 张杰, 徐意涵, 林思渝, 等. 痉挛型脑瘫患者功能性选择性脊神经后根切断术前后的三维步态特征分析[J].医用生物力学,2021, 36(5):712-717.
[33] WATERVAL NFJ, BREHM MA, PLOEGER HE, et al. Compensations in lower limb joint work during walking in response to unilateral calf muscle weakness. Gait Posture. 2018;66:38-44.
[34] PETROVIC M, MAGANARIS CN, DESCHAMPS K, et al. Altered achilles tendon function during walking in people with diabetic neuropathy: Implications for metabolic energy saving. J Appl Physiol. 2018;124(5): 1333-1340.
[35] BRUNNER R. Measures to improve gait in patients with cerebral palsy. Der Orthopäde. 2010;39(1):15-22.
[36] VAN DEN HECKE A, MALGHEM C, RENDERS A, et al. Mechanical work, energetic cost, and gait efficiency in children with cerebral palsy. J Pediatr Orthop. 2007;27(6):643-647.
[37] HUANG TWP, SHORTER KA, ADAMCZYK PG, et al. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking. J Exp Biol. 2015;218(22):3541-3550.
|