[1] LI J, YAO Y, WANG Y, et al. Modulation of the Crosstalk between Schwann Cells and Macrophages for Nerve Regeneration: A Therapeutic Strategy Based on a Multifunctional Tetrahedral Framework Nucleic Acids System. Adv Mater. 2022; 34(46):e2202513.
[2] LIU J, LI L, ZOU Y, et al. Role of microtubule dynamics in Wallerian degeneration and nerve regeneration after peripheral nerve injury. Neural Regen Res. 2022;17(3):673-681.
[3] GOMEZ-SANCHEZ JA, PATEL N, MARTIRENA F, et al. Emerging Role of HDACs in Regeneration and Ageing in the Peripheral Nervous System: Repair Schwann Cells as Pivotal Targets. Int J Mol Sci. 2022;23(6): 2996.
[4] MAENG WY, TSENG WL, LI S, et al. Electroceuticals for peripheral nerve regeneration. Biofabrication. 2022;14(4): 042002.
[5] YANG X, HUANG L, YI X, et al. Multifunctional chitin-based hollow nerve conduit for peripheral nerve regeneration and neuroma inhibition. Carbohydr Polym. 2022;289:119443.
[6] 王乐禹,邱小忠,王璞玥,等.组织工程研究的现状及应关注的重要基础科学问题[J].中国科学基金,2020,34(2):213-220.
[7] QIAN Y, ZHAO X, HAN Q, et al. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun. 2018;9(1):323.
[8] ALVAREZ-SUAREZ P, GAWOR M, PROSZYNSKI TJ. Perisynaptic schwann cells - The multitasking cells at the developing neuromuscular junctions. Semin Cell Dev Biol. 2020;104:31-38.
[9] CHU DT, PHUONG T, TIEN N, et al. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. Int J Mol Sci. 2020;21(3):708.
[10] JAFERNIK K, LADNIAK A, BLICHARSKA E, et al. Chitosan-Based Nanoparticles as Effective Drug Delivery Systems-A review. Molecules. 2023;28(4):1963.
[11] JUCKETT L, SAFFARI TM, ORMSETH B, et al. The Effect of Electrical Stimulation on Nerve Regeneration Following Peripheral Nerve Injury. Biomolecules. 2022;12(12):1856.
[12] PHAMORNNAK C, HAN B, SPENCER BF, et al. Instructive electroactive electrospun silk fibroin-based biomaterials for peripheral nerve tissue engineering. Biomater Adv. 2022;141:213094.
[13] AMAN M, MAYRHOFER-SCHMID M, SCHWARZ D, et al. Avoiding scar tissue formation of peripheral nerves with the help of an acellular collagen matrix. PLoS One. 2023;18(8):e289677.
[14] MOATTARI M, KOUCHESFEHANI HM, KAKA G, et al. Chitosan-film associated with mesenchymal stem cells enhanced regeneration of peripheral nerves: A rat sciatic nerve model. J Chem Neuroanat. 2018;88:46-54.
[15] MAGAZ A, FARONI A, GOUGH JE, et al. Bioactive Silk-Based Nerve Guidance Conduits for Augmenting Peripheral Nerve Repair. Adv Healthc Mater. 2018;7(23): e1800308.
[16] DENG WS, MA K, LIANG B, et al. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res. 2020;15(9): 1686-1700.
[17] XUAN H, TANG X, ZHU Y, et al. Freestanding Hyaluronic Acid/Silk-Based Self-healing Coating toward Tissue Repair with Antibacterial Surface. ACS Appl Bio Mater. 2020;3(3):1628-1635.
[18] GU X, CHEN X, TANG X, et al. Pure-silk fibroin hydrogel with stable aligned micropattern toward peripheral nerve regeneration. Nanotechnology reviews (Berlin). 2021;10(1):10-19.
[19] VERBOKET RD, HENRICH D, JANKO M, et al. Human Acellular Collagen Matrices-Clinical Opportunities in Tissue Replacement. Int J Mol Sci. 2024;25(13):7088.
[20] FUHRMANN T, ANANDAKUMARAN PN, SHOICHET MS. Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help? Adv Healthc Mater. 2017;6(10):1601130.
[21] 李晓寅,杨晓青,陈淑莲,等.胶原/丝素蛋白支架联合神经干细胞治疗创伤性脊髓损伤[J].中国组织工程研究,2023, 27(6):890-896.
[22] GU X, DING F, WILLIAMS DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014; 35(24):6143-6156.
[23] 衣振伟,林浩东,赵黎明.壳聚糖支架在周围神经修复中的应用研究进展[J].功能高分子学报,2024,37(3):251-261.
[24] YANG Z, ZHANG A, DUAN H, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci U S A. 2015;112(43):13354-13359.
[25] FAN W, GU J, HU W, et al. Repairing a 35-mm-long median nerve defect with a chitosan/PGA artificial nerve graft in the human: a case study. Microsurgery. 2008;28(4):238-242.
[26] GU J, HU W, DENG A, et al. Surgical repair of a 30 mm long human median nerve defect in the distal forearm by implantation of a chitosan-PGA nerve guidance conduit. J Tissue Eng Regen Med. 2012;6(2):163-168.
[27] NAWROTEK K, MAKIEWICZ M, ZAWADZKI D. Fabrication and Characterization of Polycaprolactone/Chitosan-Hydroxyapatite Hybrid Implants for Peripheral Nerve Regeneration. Polymers (Basel). 2021; 13(5):775.
[28] CHEN T, JIANG H, LI X, et al. Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering. Int J Biol Macromol. 2022;197:103-110.
[29] 刘星辰,高雪,张迪,等.新型有序排列复合磁性纳米微粒聚己内酯纤维神经导管促周围神经损伤修复的研究[J].空军军医大学学报,2023,44(6):503-508.
[30] HSU SH, CHAN SH, CHIANG CM, et al. Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials. 2011; 32(15):3764-3775.
[31] SANTORO M, SHAH SR, WALKER JL, et al. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev. 2016;107:206-212.
[32] ROCA FG, SANTOS LG, ROIG MM, et al. Novel Tissue-Engineered Multimodular Hyaluronic Acid-Polylactic Acid Conduits for the Regeneration of Sciatic Nerve Defect. Biomedicines. 2022;10(5):963.
[33] 翟耘浩,钱运.碳纳米材料在周围神经再生领域的研究与应用[J].中国组织工程研究,2024,28(15):2423-2429.
[34] 党小雯,黄海量,黄雷,等.生物医学领域碳纳米材料10年研究前沿与热点[J].中国组织工程研究,2025,29(4):752-760.
[35] WEI C, GUO Y, CI Z, et al. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother. 2024;175: 116645.
[36] GUEROUT N, DUCLOS C, DROUOT L, et al. Transplantation of olfactory ensheathing cells promotes axonal regeneration and functional recovery of peripheral nerve lesion in rats. Muscle Nerve. 2011;43(4): 543-551.
[37] KABIRI M, ORAEE-YAZDANI S, SHAFIEE A, et al. Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats. J Biomed Sci. 2015;22(1):35.
[38] WU W, ZHANG S, CHEN Y, et al. Biological Function and Mechanism of Bone Marrow Mesenchymal Stem Cells-packed Poly (3,4-ethylenedioxythiophene) (PEDOT) Scaffolds for Peripheral Nerve Injury: The Involvement of miR-21-Notch Signaling Pathway. Curr Neurovasc Res. 2017;14(1): 19-25.
[39] CHENG FC, TAI MH, SHEU ML, et al. Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg. 2010;112(4):868-879.
[40] WOOD MD, GORDON T, KEMP SW, et al. Functional motor recovery is improved due to local placement of GDNF microspheres after delayed nerve repair. Biotechnol Bioeng. 2013;110(5):1272-1281.
[41] DONG C, QIAO F, HOU W, et al. Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation. Appl Mater Today. 2020;21:100870.
[42] LEE G, RAY E, YOON H J, et al. A bioresorbable peripheral nerve stimulator for electronic pain block. Sci Adv. 2022; 8(40):eabp9169.
[43] PARK SC, OH SH, SEO TB, et al. Ultrasound-stimulated peripheral nerve regeneration within asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. J Biomed Mater Res B Appl Biomater. 2010;94(2):359-366.
[44] WU F, JIN L, ZHENG X, et al. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation. ACS Appl Mater Interfaces. 2017;9(44):38323-38335.
[45] OLARET E, DRAGUSIN DM, SERAFIM A, et al. Electrospinning Fabrication and Cytocompatibility Investigation of Nanodiamond Particles-Gelatin Fibrous Tubular Scaffolds for Nerve Regeneration. Polymers (Basel). 2021;13(3):l407.
[46] 张丽萍,朱荔,穆德露,等.生物活性静电纺丝纳米纤维支架在乳房脂肪组织工程中的研究与应用进展[J].解放军医学院学报,2024,45(3):320-325.
[47] 秦俊杰.多管道纤维神经导管的构筑及其用于周围神经损伤修复[D].北京:北京化工大学,2024.
[48] DAI Y, LU T, LI L, et al. Electrospun Composite PLLA-PPSB Nanofiber Nerve Conduits for Peripheral Nerve Defects Repair and Regeneration. Adv Healthc Mater. 2024;13(10):e2303539.
[49] MURPHY SV, ATALA A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014; 32(8):773-785.
[50] MORRISON RJ, HOLLISTER SJ, NIEDNER MF, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015;7(285):285ra64.
[51] HU Y, WU Y, GOU Z, et al. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration. Sci Rep. 2016;6:32184.
[52] TAO J, ZHANG J, DU T, et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater. 2019;90:49-59.
|