中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (23): 6150-6146.doi: 10.12307/2026.387

• 组织构建循证医学 evidence-based medicine in tissue construction • 上一篇    

血流限制训练对激活后表现提升幅度-时间特征的影响:系统评价和Meta分析

李彦锋1,张益林2,孔  昊2,郑  航3,刘嘉俊4,殷明越3,5,邱柏澎4,黄孔云3,刘恒贤3,钟裕明3,陈  钧1,徐  恺3   

  1. 1首都体育学院体育教育训练学院,北京市   100191;2天津体育学院运动训练学院,天津市   301617;3上海体育大学竞技运动学院,上海市   200438;4北京体育大学体能训练学院,北京市   100084;5澳大利亚天主教大学Mary MacKillop健康研究所,墨尔本   3000,澳大利亚
  • 收稿日期:2025-08-18 接受日期:2025-09-29 出版日期:2026-08-18 发布日期:2026-01-06
  • 通讯作者: 徐恺,硕士,上海体育大学竞技运动学院,上海市 200438
  • 作者简介:李彦锋,男,2000年生,福建省福州市人,汉族,硕士,主要从事运动生物力学研究。 并列第一作者:张益林,男,2000年生,四川省广元市人,汉族,天津体育学院在读硕士,主要从事运动促进健康方向研究。
  • 基金资助:
    澳大利亚政府研究培训计划资助奖学金

Effect of blood flow restriction training on the magnitude and temporal characteristics of post-activation performance enhancement: a systematic review and meta-analysis

Li Yanfeng1, Zhang Yilin2, Kong Hao2, Zheng Hang3, Liu Jiajun4, Yin Mingyue3, 5, Qiu Bopeng4, Huang Kongyun3, Liu Hengxian3, Zhong Yuming3, Chen Jun1, Xu Kai3   

  1. 1Institute of Physical Education and Training, Capital University of Physical Education and Sports, Beijing 100191, China; 2School of Sports Training, Tianjin University of Sport, Tianjin 301617, China; 3School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China; 4School of Strength and Conditioning, Beijing Sport University, Beijing 100084, China; 5The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
  • Received:2025-08-18 Accepted:2025-09-29 Online:2026-08-18 Published:2026-01-06
  • Contact: Xu Kai, MS, School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
  • About author:Li Yanfeng, MS, Institute of Physical Education and Training, Capital University of Physical Education and Sports, Beijing 100191, China Zhang Yilin, MS candidate, School of Sports Training, Tianjin University of Sport, Tianjin 301617, China Li Yanfeng and Zhang Yilin contributed equally to this work.
  • Supported by:
    Australian Government Research Training Program Funding Scholarships

摘要:



文题释义:
血流限制训练:是一种通过在肢体近端施加加压袖带以减少肌肉动脉血流和静脉回流的训练方法。
激活后表现提升:是指最大或接近最大强度自主收缩后运动表现急性提升的现象。通常采用低量高强度的预激活诱导产生,出现的时间在预激活后的~2.5-11 min,提升运动表现的幅度可达~2%-10%。
运动表现:在文中指验证激活后表现提升的测量方式,包括跳跃、冲刺和卧推投掷。

目的:通过多层次Meta分析方法,系统比较血流限制结合预激活(用以诱导激活后表现提升)相比单独预激活或静坐、低强度预激活结合血流限制训练相比高强度预激活、静坐结合血流限制训练相比静坐对运动表现的急性影响。
方法:遵循PRISMA指南,系统检索Web of Science、PubMed、SPORTDiscus和CNKI数据库(建库至2025-05-24)。纳入标准:①研究对象为至少身体活跃的健康人群;②研究中至少有以下4种对比形式:预激活+血流限制训练相比单独预激活;预激活+血流限制训练相比静坐;低强度预激活+血流限制训练相比高强度预激活;静坐结合血流限制相比静坐;③以运动表现(如跳跃、冲刺、卧推投掷)为主要结局指标;④采用随机或非随机交叉/平行干预设计;⑤发表于同行评审的中英文期刊。采用ROB-2评估偏倚风险,GRADE评价证据质量。数据通过聚类稳健方差估计和三水平混合效应模型拟合,并进行小样本校正。通过亚组分析和Meta回归探索调节变量及异质性来源。
结果:共纳入12项研究(196名受试者,女性12名,男性184名)。主要发现:①预激活+血流限制较单独预激活更有效提升运动表现(ES=0.21,95%CI=0.01-0.40,GRADE=低),其中恢复时间4-12 min及50%动脉闭塞压时效果最佳(ES=1.49);②预激活+血流限制与静坐无显著差异(ES=0.52,95%CI=-0.12-1.15,GRADE=非常低),但预激活+140 mmHg血流限制效果优于单独预激活(ES=1.21,95%CI=0.14-2.28);③低强度预激活+血流限制与高强度预激活效果无差异(ES=-0.10,95%CI=-0.84-0.64,GRADE=低);④静坐结合血流限制与静坐无显著差异(ES=0.24,95%CI=-0.03-0.52,GRADE=非常低)。值得注意的是,后两种对比的效果随着恢复时间显著递减(β=-0.04,P < 0.01和β=-0.04,P=0.02)。
结论:预激活结合血流限制较单独预激活更能有效诱导激活后表现提升,初步提示采用50%动脉闭塞压及4-12 min恢复时间。然而,预激活结合血流限制似乎并不比静坐更有效,这可能是纳入研究数量不足导致。此外,低强度预激活+血流限制可达到与高强度预激活相似的激活后表现提升效果,而静坐结合血流限制对运动表现的潜在益处可能随时间递减。总体上,初步建议采用低强度预激活(如30%最大质量深蹲或自重训练)结合50%动脉闭塞压或140 mmHg的血流限制,恢复4-12 min进行后续运动表现测试。

https://orcid.org/0000-0002-1403-4127 (徐恺)


中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词:

血流限制, 激活后表现提升, 深蹲, 腿举, 跳跃表现, 冲刺表现, 多层次Meta分析

Abstract: OBJECTIVE: Multi-level meta-analysis was used to systematically compare the acute effects of blood flow restriction combined with conditioning activity (that is used to induce post-activation performance enhancement) versus conditioning activity alone, conditioning activity plus blood flow restriction versus seated rest, low-intensity conditioning activity plus blood flow restriction versus high-intensity conditioning activity, and seated rest plus blood flow restriction versus seated rest on exercise performance. 
METHODS: Following Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines, we systematically searched the Web of Science, PubMed, SPORTDiscus, and CNKI databases from their inception to May 24, 2025. The inclusion criteria were: (1) participants were at least physically active and healthy; (2) those reported at least one of the following four comparisons: blood flow restriction+conditioning activity versus conditioning activity alone, conditioning activity+blood flow restriction versus seated rest, low-intensity conditioning activity+blood flow restriction versus high-intensity conditioning activity, and seated rest+blood flow restriction versus seated rest alone; (3) exercise performance (e.g., jump height, sprint time, and bench throw) reported as the primary outcome; (4) randomized or non-randomized crossover/parallel intervention designs; and (5) relevant articles published in peer-reviewed English or Chinese journals. Risk of bias was assessed using ROB-2, and evidence quality was evaluated via Grading of Recommendations Assessment Development and Evaluation (GRADE). Data were synthesized using cluster-robust variance estimation and three-level mixed-effects models with small-sample adjustments. Subgroup analyses and meta-regression were conducted to explore moderators and heterogeneity sources.
RESULTS: A total of 12 studies involving 196 participants (12 females and 184 males) were included. The main findings were: (1) conditioning activity+blood flow restriction was more effective than conditioning activity alone in acutely enhancing performance (ES=0.21, 95% confidence interval [CI]=0.01-0.40, GRADE=low), with optimal effects at 4-12 minutes of recovery and 50% arterial occlusion pressure (ES=1.49); (2) conditioning activity+blood flow restriction showed no significant difference compared with seated rest (ES=0.52, 95% CI=-0.12 to 1.15, GRADE=very low), but the conditioning activity+140 mmHg blood flow restriction outperformed conditioning activity alone (ES=1.21, 95% CI=0.14-2.28); (3) low-intensity conditioning activity+blood flow restriction had similar effects to high-intensity conditioning activity (ES=-0.10, 95% CI=-0.84 to 0.64, GRADE=low); and (4) seated rest+blood flow restriction did not differ from seated rest alone (ES=0.24, 95% CI=-0.03-0.52, GRADE=very low). Notably, the latter two comparisons showed performance declines over recovery time (β=-0.04, P < 0.01 and β=-0.04, P=0.02).
CONCLUSION: A preliminary suggestion is that blood flow restriction combined with conditioning activity can enhance post-activation performance enhancement more than conditioning activity alone, with 50% arterial occlusion pressure and a recovery period of 4-12 minutes being potentially optimal. However, conditioning activity+blood flow restriction does not appear to outperform seated rest, possibly due to limited studies. In addition, low-intensity conditioning activity+blood flow restriction can achieve similar post-activation performance enhancement as high-intensity conditioning activity, while the potential benefits of seated blood combined with blood flow restriction on exercise performance may diminish over time. Overall, the preliminary recommendation is to use low-intensity conditioning activity (e.g., 30% of one-repetition maximum squat or body weight exercises) combined with 50% arterial occlusion pressure or 140 mmHg blood flow restriction with a recovery period of 4-12 minutes for subsequent exercise performance testing.

Key words:  blood flow restriction, post-activation performance enhancement, squat, leg press, jump, sprint, multi-level meta-analysis

中图分类号: