[1] BENJAMIN M, MCGONAGLE D. Entheses: tendon and ligament attachment sites. Scand J Med Sci Sports. 2009;19(4):520-527.
[2] SUZUKI D, OTSUBO H, ADACHI T, et al. Functional Adaptation of the Fibrocartilage and Bony Trabeculae at the Attachment Sites of the Anterior Cruciate Ligament. Clin Anat. 2020;33(7):988-996.
[3] PATEL S, CALDWELL JM, DOTY SB, et al. Integrating soft and hard tissues via interface tissue engineering. J Orthop Res. 2018;36(4):1069-1077.
[4] LU H, CHEN C, XIE S, et al. Tendon Healing in Bone Tunnel after Human Anterior Cruciate Ligament Reconstruction: A Systematic Review of Histological Results. J Knee Surg. 2019;32(5):454-462.
[5] SHIMOMURA K, TSUJII A, TANAKA A, et al. Bone-Patellar Tendon-Bone Versus Quadriceps Tendon-Bone Autografts in Anatomic Rectangular Tunnel Anterior Cruciate Ligament Reconstruction. Orthop J Sports Med. 2024;12(11): 23259671241297104.
[6] DURIGAN JLQ, ITO N, SCATTONE SILVA R, et al. Regional Patellar Tendon Strain in the Short- and Long-term After ACL Reconstruction Using Bone-Patellar Tendon-Bone Autograft. Am J Sports Med. 2025; 53(3):632-6329.
[7] GHEBES CA, KELDER C, SCHOT T, et al. Anterior cruciate ligament- and hamstring tendon-derived cells: in vitro differential properties of cells involved in ACL reconstruction. J Tissue Eng Regen Med. 2017; 11(4):1077-1088.
[8] BLAKENEY WG, HAYES A, KOP A, et al. Biomechanical and Histological Study of Retrieved LARS Synthetic Ligaments. Am J Sports Med. 2024; 52(8):1979-1983.
[9] HAN F, ZHANG P, CHEN T, et al. A LbL-Assembled Bioactive Coating Modified Nanofibrous Membrane for Rapid Tendon-Bone Healing in ACL Reconstruction. Int J Nanomedicine. 2019;14:9159-9172.
[10] YAHYA EB, AMIRUL AA, H P S AK, et al. Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers (Basel). 2021;13(10):1612.
[11] FUJINO K, YAMAMOTO N, YOSHIMURA Y, et al. Repair potential of self-assembling peptide hydrogel in a mouse model of anterior cruciate ligament reconstruction. J Exp Orthop. 2024;11(3):e12061.
[12] HAN H, WANG S, SHAHBAZI MA, et al. Reactive oxygen species switcher via MnO(2)-coated Prussian blue loaded hyaluronic acid methacrylate hydrogel microspheres for local anti-tumor treatment. J Control Release. 2025;378:350-364.
[13] LEE YJ, OH JH, PARK S, et al. The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats. Tissue Eng Regen Med. 2025;22(1):91-104.
[14] WANG R, SHI M, XU F, et al. Graphdiyne-modified TiO(2) nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat Commun. 2020;11(1):4465.
[15] DELA CRUZ NJM, PAPAVASILIOU T, GIBBONS C. 319 G-Master: A Novel 3D Printed ACL Graft Preparation System That Improves Speed and Autonomy. Br J Surg. 2022;109(Supplement_1): znac039.209. D
[16] REDDY MSB, PONNAMMA D, CHOUDHARY R, et al. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel). 2021;13(7):1105.
[17] VACH AGOCSOVA S, CULENOVA M, BIROVA I, et al. Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. Materials (Basel). 2023;6(12):4267.
[18] ARCHER DE, MAFI R, MAFI P, et al. Preclinical Studies on Biomaterial Scaffold use in Knee Ligament Regeneration: A Systematic Review. Curr Stem Cell Res Ther. 2018;13(8):691-701.
[19] OPRITA EI, IOSAGEANU A, CRACIUNESCU O. Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing. Gels. 2022;8(10):648.
[20] 杨云云,陈祁青,赵继荣,等.中药单体介导相关信号通路治疗椎间盘退行性变研究现状[J].中国组织工程研究,2024,28(18): 2918-2924.
[21] GAO L, ZHANG SQ. Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals (Basel). 2022;15(4):397.
[22] LIU H, JIAO Y, FOROUZANFAR T, et al. High-strength double-network silk fibroin based hydrogel loaded with Icariin and BMSCs to inhibit osteoclasts and promote osteogenic differentiation to enhance bone repair. Biomater Adv. 2024;160:213856.
[23] 李贤真,李彦锋,朱晓夏,等.高分子水凝胶材料研究进展[J].功能材料,2003(4):382-385.
[24] YAZAWA K, HIDAKA K, NEGISHI J. Cell Adhesion Behaviors on Spider Silk Fibers, Films, and Nanofibers. Langmuir. 2022;38(25):7766-7774.
[25] FAZAL N, LATIEF N. Bombyx mori derived scaffolds and their use in cartilage regeneration: a systematic review. Osteoarthritis Cartilage, 2018;26(12):1583-1594.
[26] YODMUANG S, MCNAMARA SL, NOVER AB, et al. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015;11:27-36.
[27] 潘小鹏,吕玲玲,张旭,等.光交联丝素蛋白生物3D打印墨水的研究进展[J].丝绸,2024,61(8):50-59.
[28] 李蒙,戴梦男,俞杨销,等.丝素蛋白基骨修复材料的应用研究进展[J].纺织学报,2024,45(10):224-231.
[29] WENZ A, BORCHERS K, TOVAR GEM, et al. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication. 2017;9(4):044103.
[30] WANG Z, LIANG W, WANG G, et al. Construction Form and Application of Three-Dimensional Bioprinting Ink Containing Hydroxyapatite. Tissue Eng Part B Rev. 2024;30(5):507-521.
[31] JIANG Q, WANG L, LIU Z, et al. Canine ACL reconstruction with an injectable hydroxyapatite/collagen paste for accelerated healing of tendon-bone interface. Bioact Mater. 2023;20:1-15.
[32] LIU YS, ZHONG HB, LIU WL, et al. Icariin alleviates the apoptosis of chondrocytes in osteoarthritis through regulating SIRT-1-Nrf2-HO-1 signaling. Chem Biol Drug Des. 2024;103(4):e14518.
[33] HUANG X, WANG X, ZHANG Y, et al. Absorption and utilisation of epimedin C and icariin from Epimedii herba, and the regulatory mechanism via the BMP2/ Runx2 signalling pathway. Biomed Pharmacother. 2019;118:109345.
[34] 路冬冬,朱天峰,张一健,等.3D生物打印甲基丙烯酰化明胶水凝胶支架促进软骨下骨缺损的修复 [J].中国组织工程研究,2022, 26(34):5454-5460.
[35] 陈曼雨.PRP多功能水凝胶增强3D打印HAp支架用于颅骨缺损的再生修复研究[D].成都:四川大学,2021.
[36] FENG W, WANG Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications]. Adv Sci (Weinh). 2023;10(28): e2303326.
[37] 汪雕雕,孙雨阳,田壮,等.不同骨组织工程支架设计与骨传导性、骨诱导性及生物降解性变化的关系[J].中国组织工程研究, 2022,26(21):3435-3444.
|