[1] STAN D, TANASE C, AVRAM M, et al. Wound healing applications of creams and “smart” hydrogels. Exp Dermatol. 2021;30(9):1218-1232.
[2] YILDIRIMER L, THANH NTK, SEIFALIAN AM. Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol. 2012;30(12):638-648.
[3] VELNAR T, BAILEY T, SMRKOLJ V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528-1542.
[4] GURTNER GC, WERNER S, BARRANDON Y, et al. Wound repair and regeneration. Nature. 2008;453(7193):314-321.
[5] PARANI M, LOKHANDE G, SINGH A, et al. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl Mater Interfaces. 2016;8(16):10049-10069.
[6] KONDO T, ISHIDA Y. Molecular pathology of wound healing. Forensic sci int. 2010;203(1-3):93-98.
[7] QI L, ZHANG C, WANG B, et al. Progress in hydrogels for skin wound repair. Macromol Biosci. 2022;22(7):2100475.
[8] 宋杏丽.创面修复的研究进展与启示[J].中国现代医药杂志,2024, 26(8):1-4.
[9] 林锦涛,韩晓璐,洪晓轩,等.医用湿性敷料在创面修复的应用及研究进展[J].中国药学杂志,2025,60(4):319-325.
[10] 符传亮,张雯静,王任远,等.功能化水凝胶在创面修复应用的研究进展[J].生物骨科材料与临床研究,2025,22(1):64-69,81.
[11] 高仪轩,周彪,巴特,等. 新型敷料在创面修复中的应用与进展[J].中华损伤与修复杂志(电子版),2022,17(1):68-71.
[12] WANG J, CHEN Y, ZHOU G, et al. Polydopamine-coated Antheraea pernyi (A. pernyi) silk fibroin films promote cell adhesion and wound healing in skin tissue repair. ACS Appl Mater Interfaces. 2019;11(38): 34736-34743.
[13] YANG J, ZENG WN, XU P, et al. Glucose-responsive multifunctional metal–organic drug-loaded hydrogel for diabetic wound healing. Acta Biomater. 2022;140:206-218.
[14] KARAMI F, SABER-SAMANDARI S. Synthesis and characterization of a novel hydrogel based on carboxymethyl chitosan/sodium alginate with the ability to release simvastatin for chronic wound healing. Biomed Mater. 2023;18(2):025001.
[15] WU J, ZHU J, HE C, et al. Comparative study of heparin-poloxamer hydrogel modified bFGF and aFGF for in vivo wound healing efficiency. ACS Appl Mater Interfaces. 2016;8(29):18710-18721.
[16] CHEN Y, ZHANG Y, CHANG L, et al. Mussel-inspired self-healing hydrogel form pectin and cellulose for hemostasis and diabetic wound repairing. Int J Biol Macromol. 2023;246:125644.
[17] WANG T, YI W, ZHANG Y, et al. Sodium alginate hydrogel containing platelet-rich plasma for wound healing. Colloids Surf B Biointerfaces. 2023;222:113096.
[18] XU Q, SIGEN A, GAO Y, et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018;75:63-74.
[19] DONG Y, HASSAN WU, KENNEDY R, et al. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Acta Biomater. 2014;10(5):2076-2085.
[20] YU Q, SUN H, YUE Z, et al. Zwitterionic polysaccharide‐based hydrogel dressing as a stem cell carrier to accelerate burn wound healing. Adv Healthc Mater. 2023;12(7):2202309.
[21] CHU W, WANG P, MA Z, et al. Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. Int J Biol Macromol. 2023;243:125310.
[22] LIU Y, CAI S, SHU XZ, et al. Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing. Wound Repair Regen. 2007;15(2):245-251.
[23] SARI MHM, COBRE AF, PONTAROLO R, et al. Status and future scope of Soft nanoparticles-based hydrogel in Wound Healing. Pharmaceutics. 2023;15(3):874.
[24] ZHAO L, NIU L, LIANG H, et al. pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl Mater Interfaces. 2017;9(43): 37563-37574.
[25] GUO B, LIANG Y, DONG R. Physical dynamic double-network hydrogels as dressings to facilitate tissue repair. Nat Protoc. 2023;18(11): 3322-3354.
[26] 朱琳,陈强,徐昆.高强度双网络水凝胶的增韧机理[J].化学进展, 2014,26(6):1032-1038.
[27] 李立清,钟秀敏,章礼旭,等.双网络水凝胶制备及其力学改性[J].化学进展,2023,35(11):1674-1685.
[28] DOU C, LI Z, LUO Y, et al. Bio-based poly (γ-glutamic acid)-gelatin double-network hydrogel with high strength for wound healing. Int J Biol Macromol. 2022;202:438-452.
[29] COSTA AMS, MANO JF. Extremely strong and tough hydrogels as prospective candidates for tissue repair–A review. Eur Polym J. 2015; 72:344-364.
[30] LIU H, LI Z, ZHAO Y, et al. Novel diabetic foot wound dressing based on multifunctional hydrogels with extensive temperature-tolerant, durable, adhesive, and intrinsic antibacterial properties. ACS Appl Mater Interfaces. 2021;13(23):26770-26781.
[31] LI Y, WANG H, NIU Y, et al. Fabrication of CS/SA double‐network hydrogel and application in pH‐controllable drug release. ChemistrySelect. 2019;4(48):14036-14042.
[32] WAN J, LIANG Y, WEI X, et al. Chitosan-based double network hydrogel loading herbal small molecule for accelerating wound healing. Int J Biol Macromol. 2023;246:125610.
[33] 张璨琁,冯雨金,贺启元,等.双网络水凝胶在医药领域的应用及研究进展[J].组织工程与重建外科,2024,20(1):135-141.
[34] 朱鹏,张兴群,王云龙,等.海藻酸盐医用敷料研究进展[J].上海纺织科技,2020,48(11):13-18.
[35] 王蕾,吕康宁,李文军,等.两种不同海洋生物材料对大鼠急性创面修复效果的研究[J].海洋科学,2023,47(10):87-93.
[36] 吴沥豪,陈功,任康,等.羧甲基壳聚糖基生物医用材料降解代谢行为的研究进展[J].高分子通报,2023,36(2):148-157.
[37] 陈锐,王语馨,鲍凡凡,等.壳聚糖在医用敷料领域中的研究进展[J].现代丝绸科学与技术,2020,35(4):36-40.
[38] KIM AR, LEE SL, PARK SN. Properties and in vitro drug release of pH-and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. Int J Biol Macromol. 2018;118:731-740.
[39] FAN X, HUANG J, ZHANG W, et al. A multifunctional, tough, stretchable, and transparent curcumin hydrogel with potent antimicrobial, antioxidative, anti-inflammatory, and angiogenesis capabilities for diabetic wound healing. ACS Appl Mater Interfaces. 2024;16(8):9749-9767.
[40] JIN SE, SON YK, MIN BS, et al. Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Arch Pharm Res. 2012;35:823-837.
[41] LIU CM, MA JQ, SUN YZ. Puerarin protects rat kidney from lead-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol Appl Pharmacol. 2012;258(3):330-342.
[42] 杨敏,丁传波,马葭葭.葛根素药理活性研究进展[J].人参研究, 2021,33(6):62-64.
[43] 刘春丽,闫雨娟,莫礼文,等.葛根素对RAW264.7细胞破骨分化的影响[J].中国组织工程研究,2023,27(32):5114-5119.
[44] 孙姝婵,龚迪菲,袁天翊,等.葛根素通过改善线粒体呼吸功能减轻血管内皮细胞氧化损伤[J].药学学报,2022,57(5):1352-1360.
[45] 郑彩云,戴亨纷,陈莉娜.葛根的药食功效和现代应用探析[J].中国现代中药,2024,26(10):1815-1822.
[46] 曹盼,张樱山,魏学明,等.葛根素药理作用研究新进展[J].中成药,2021,43(8):2130-2134.
[47] 李欢,张相安.葛根在治疗炎症性肠病中的作用机制和应用研究进展[J].中草药,2025,56(4):1428-1439.
[48] 徐珊珊,阎丽颖,范光艳.湿性愈合技术对难愈性创面护理的应用效果[J].新疆中医药,2024,42(2):58-59.
[49] 程海霞,陈玲玲,鲍丽超.现代伤口敷料在慢性伤口护理中的研究进展[J].全科护理,2025,23(5):825-827.
[50] ANVERY N, SELIM A, KHACHEMOUNE A. The Role of Puerarin in Chronic Wounds: A Review of its Mechanism of Action and Potential Novel Applications. Int J Low Extrem Wounds. 2024;23(4):492-496.
[51] 周晶,吴达莹,杨清,等.葛根素水凝胶对糖尿病大鼠创面血管形成及愈合的影响[J].中药新药与临床药理,2023,34(7):921-928.
[52] NGUYEN LTH, AHN SH, CHOI MJ, et al. Puerarin improves dexamethasone-impaired wound healing in vitro and in vivo by enhancing keratinocyte proliferation and migration. Appl Sci. 2021;11(19):9343.
[53] YADAV JP, VERMA A, PATHAK P, et al. Phytoconstituents as modulators of NF-κB signalling: Investigating therapeutic potential for diabetic wound healing. Biomed Pharmacother. 2024;177:117058.
[54] 李蕾,林放,施琳颖,等.缓释生长因子羧甲基壳聚糖支架抑菌功能的研究[J].重庆医学,2020,49(8):1212-1217.
[55] 陈泽楚,李婷,陈锦涛.O-羧甲基壳聚糖的制备及其抗菌性能研究[J].化工新型材料,2016,44(9):175-177.
[56] OLANIPEKUN EO, AYODELE O, OLATUNDE OC, et al. Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential. Int J Biol Macromol. 2021; 183:1971-1977.
[57] 李森池,张扬.羧甲基壳聚糖/纳米银抗菌剂的制备及缓释性能研究[J].化工新型材料,2024,52(1):274-279.
[58] 刘琳,班雨,魏悦,等.多功能海藻酸钠海绵的制备及抗菌、止血性能分析[J].分析化学,2021,49(12):1986-1994.
[59] 王悦,徐国平,仇巧华,等.聚乙烯醇/海藻酸钠载药复合水凝胶的制备及其抗菌性能[J].现代纺织技术,2023,31(3):145-154. |