[1] O’NEILL TW, FELSON DT. Mechanisms of Osteoarthritis (OA) Pain. Curr Osteoporos Rep. 2018;16(5):611-616.
[2] 中华中医药学会骨伤科分会膝痹病(膝骨关节炎)临床诊疗指南指定工作组.中医骨伤科临床诊疗指南·膝痹病(膝骨关节炎)[J].康复学报,2019,29(3):1-7.
[3] DING L, LIAO T, YANG N, et al. Chrysin ameliorates synovitis and fibrosis of osteoarthritic fibroblast-like synoviocytes in rats through PERK/TXNIP/NLRP3 signaling. Front Pharmacol. 2023;14:1170243.
[4] HAN X, LIN D, HUANG W, et al. Mechanism of NLRP3 inflammasome intervention for synovitis in knee osteoarthritis: A review of TCM intervention. Front Genet. 2023;14:1159167.
[5] CHEN S, KANG P, ZHAO Z, et al. Danggui-Shaoyao-San (DSS) ameliorates the progression of osteoarthritis via suppressing the NF-κB signaling pathway: an in vitro and in vivo study combined with bioinformatics analysis. Aging (Albany NY). 2024;16(1):648-664.
[6] XU J, CHEN X, ZHANG H, et al. Platelet-rich plasma relieves inflammation and pain by regulating M1/M2 macrophage polarization in knee osteoarthritis rats. Sci Rep. 2025;15(1):12805.
[7] XU X, LI N, WU Y, et al. Zhuifeng tougu capsules inhibit the TLR4/MyD88/NF-κB signaling pathway and alleviate knee osteoarthritis: In vitro and in vivo experiments. Front Pharmacol. 2022;13:951860.
[8] IM SS, OSBORNE TF. Liver x receptors in atherosclerosis and inflammation. Circ Res. 2011;108(8):996-1001.
[9] BI X, SONG J, GAO J, et al. Activation of liver X receptor attenuates lysophosphatidylcholine-induced IL-8 expression in endothelial cells via the NF-κB pathway and SUMOylation. J Cell Mol Med. 2016; 20(12):2249-2258.
[10] CHENG O, OSTROWSKI RP, LIU W, et al. Activation of liver X receptor reduces global ischemic brain injury by reduction of nuclear factor-kappaB. Neuroscience. 2010;166(4):1101-1109.
[11] 陈宝军,闫虎,张庆,等.壮骨健膝方治疗肝肾亏虚、风寒湿痹型膝骨关节炎76例临床观察[J].福建中医药大学学报,2013,23(6):3-5.
[12] YAN H, SU YX, LIN XY, et al. Zhuanggu Jianxi Decoction () limits interleukin-1 β-induced degeneration chondrocytes via the caveolin-p38 MAPK signal pathway. Chin J Integr Med. 2014;20(5):353-359.
[13] 毛骁,肖艳,郭洁梅,等.壮骨健膝方对兔膝骨关节炎滑膜炎症肝X受体/核因子κB通路的影响[J].世界中医药,2021,16(21):3198-3203.
[14] 吴秉纯.医学动物实验基础及基本技术方法[M].哈尔滨:黑龙江人民出版社,2008:184.
[15] 郭洁梅.从LXRs/NF-κB通路探讨壮骨健膝方对KOA滑膜炎症影响的实验研究[D].福州:福建中医药大学,2021.
[16] HUNTER DJ, BIERMA-ZEINSTRA S. Osteoarthritis. Lancet. 2019; 393(10182):1745-1759.
[17] NEOGI T, GUERMAZI A, ROEMER F, et al. Association of Joint Inflammation With Pain Sensitization in Knee Osteoarthritis: The Multicenter Osteoarthritis Study. Arthritis Rheumatol. 2016;68(3):654-661.
[18] 李岩,赵伟光.膝骨关节炎疼痛机制及相关影响因素的研究进展[J].中医正骨,2022,34(9):52-56+66.
[19] 章晓云,曾浩,孟林.膝骨关节炎疼痛机制及治疗研究进展[J].中国疼痛医学杂志,2023,29(1):50-58.
[20] 苏友新,陈顺有,林清坚,等.壮骨健膝方对膝骨性关节炎患者关节滑液细胞因子、NO的影响[J].福建中医学院学报,2006,16(2): 38-40.
[21] 陈宝军,闫虎,林学义,等.壮骨健膝方对IL-1β诱导后软骨细胞表达Caveolin-1、p-p38、MMP-3、MMP-13及TNF-α的影响[J].中华中医药杂志,2014,29(9):2931-2933.
[22] 洪振强,滕方舟,郭洁梅,等.壮骨健膝方含药血清对人退变关节软骨细胞caveolin-p38MAPK信号通路的影响[J].中华中医药杂志, 2019,34(9):4055-4059.
[23] 陈鹏,郭洁梅,肖艳,等.基于LXRs/NF-B通路探讨壮骨健膝方对兔膝骨关节炎滑膜组织炎症的影响[J].康复学报,2022,32(1):48-55.
[24] 陈鹏,郭洁梅,肖艳,等.基于LXRs/NF-κB信号通路对A型滑膜细胞的调控探讨壮骨健膝方的作用机制[J].中国中西医结合杂志, 2022,42(9):1087-1094.
[25] 肖艳,刘俊,陈鹏,等.壮骨健膝方调控LXRs/NF-κB信号通路减轻人膝骨关节炎滑膜组织炎症的机制研究[J].中国中药杂志,2024, 49(23):6481-6489.
[26] 戴冽,尹培达.滑膜巨噬细胞与类风湿关节炎病性活动及关节破坏的相关性[J].中华风湿病学杂志,1999,3(4):229-231.
[27] SAMAVEDI S, DIAZ-RODRIGUEZ P, ERNDT-MARINO JD, et al. A Three-Dimensional Chondrocyte-Macrophage Coculture System to Probe Inflammation in Experimental Osteoarthritis. Tissue Eng Part A. 2017; 23(3-4):101-114.
[28] GLASS CK, SAIJO K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol. 2010;10(5):365-376.
[29] LU J, ZHANG H, PAN J, et al. Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther. 2021;23(1):142.
[30] YAO Q, WU X, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):56.
[31] CHEN H, QIN J, SHI H, et al. Rhoifolin ameliorates osteoarthritis via the Nrf2/NF-κB axis: in vitro and in vivo experiments. Osteoarthritis Cartilage. 2022;30(5):735-745.
[32] JIA S, YANG Y, BAI Y, et al. Mechanical Stimulation Protects Against Chondrocyte Pyroptosis Through Irisin-Induced Suppression of PI3K/Akt/NF-κB Signal Pathway in Osteoarthritis. Front Cell Dev Biol. 2022; 10:797855.
[33] SHI Y, CHEN J, LI S, et al. Tangeretin suppresses osteoarthritis progression via the Nrf2/NF-κB and MAPK/NF-κB signaling pathways. Phytomedicine. 2022;98:153928.
[34] CUI X, WANG M, LI H, et al. Tenacissoside G alleviated osteoarthritis through the NF-κB pathway both in vitro and in vivo. Immunol Lett. 2023;258:24-34.
[35] GHISLETTI S, HUANG W, OGAWA S, et al. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell. 2007;25(1):57-70.
[36] JAKOBSSON T, TREUTER E, GUSTAFSSON JÅ, et al. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci. 2012;33(7):394-404.
[37] WANG JQ, LI LL, HU A, et al. Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion. Nature. 2022;608(7922): 413-420.
[38] ZHOU E, GE X, NAKASHIMA H, et al. Inhibition of DHCR24 activates LXRα to ameliorate hepatic steatosis and inflammation. EMBO Mol Med. 2023;15(8):e16845.
[39] GENG R, LI J, YU C, et al. Knee osteoarthritis: Current status and research progress in treatment (Review). Exp Ther Med. 2023;26(4): 481.
[40] MINTARJO JA, POERWANTO E, TEDYANTO EH. Current Non-surgical Management of Knee Osteoarthritis. Cureus. 2023;15(6):e40966.
[41] WANG Z, EFFERTH T, HUA X, et al. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. Phytomedicine. 2022;105:154347.
|