[1] NEMATOLLAHI M, BAGHBADERANI KS, AMERINATANZI A, et al. Application of NiTi in assistive and rehabilitation devices: a review. Bioengineering (Basel). 2019;6(2):37.
[2] ÖLANDER A. An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc. 1932;54(10):3819-3833.
[3] Smith CN. Method for coloring plastic resins [P]. U.S. Patent 2260543. 1941.
[4] BUEHLER WJ, GILFRICH JV, WILEY R. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys. 1963;34(5):1475-1477.
[5] KIM MS, HEO JK, RODRIGUE H, et al. Shape memory alloy (SMA) actuators: the role of material, form, and scaling effects. Adv Mater. 2023;35(33): e2208517.
[6] 吴华,王平侠.两种骨科固定材料生物力学性能及应用比较研究[J].中国医学装备,2017,14(7):48-51.
[7] 申琦,余森,牛金龙,等.植介入用精细金属丝材及其异质材料焊接技术研究进展[J].材料导报,2019,33(13):2127-2132.
[8] KOLA MZ, RAGHAV D, KUMAR P, et al. In vitro assessment of clasps of cobalt-chromium and nickel-titanium alloys in removable prosthesis. J Contemp Dent Pract. 2016;17(3):253-257.
[9] CONTUZZI N, CASALINO G, BOCCACCIO A, et al. Metals biotribology and oral microbiota biocorrosion mechanisms. J Funct Biomater. 2022;14(1):14.
[10] 徐汉权,陈泽鑫,路新,等.增材制造NiTi合金研究进展[J].粉末冶金技术,2022,40(2):159-171.
[11] SRIVASTAVA R, ALSAMHI SH, MURRAY N, et al. Shape memory alloy-based wearables: a review, and conceptual frameworks on HCI and HRI in industry 4.0. Sensors (Basel). 2022;22(18):6802.
[12] OZAIR H, BALUCH AH, UR REHMAN MA, et al. Shape memory hybrid composites. ACS Omega. 2022;7(41):36052-36069.
[13] LIN JH, CHIANG MH. Hysteresis analysis and positioning control for a magnetic shape memory actuator. Sensors (Basel). 2015;15(4):8054-8071.
[14] MINOROWICZ B, MILECKI A. Design and control of magnetic shape memory alloy actuators. Materials (Basel). 2022;15(13):4400.
[15] 陈一哲,杨雨卓,彭文鹏,等.形状记忆合金的应用及其特性研究进展[J].功能材料,2022,53(5):5026-5038.
[16] 金超斌,张波,周志钢,等.非对称自复位SMA连接的力学性能研究[J].地震工程与工程振动,2023,43(6):119-128.
[17] SUN P, WANG Q, FENG J, et al. Effect of Nb on the damping property and pseudoelasticity of a porous Ni-Ti shape memory alloy. Materials (Basel). 2023;16(14):5057.
[18] HOH DJ, HOH BL, AMAR AP, et al. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications. Neurosurgery. 2009;64(5 Suppl 2):199-215.
[19] YANG Y, CHU C, JIN H, et al. Design, modeling, and control of an aurelia-inspired robot based on SMA artificial muscles. Biomimetics (Basel). 2023; 8(2):261.
[20] ROODENBURG SA, POUWELS SD, KLOOSTER K, et al. Endobronchial valve treatment does not cause significant nickel deposition in lung tissue. Respiration. 2023;102(6):454-457.
[21] ALIPOUR S, TAROMIAN F, GHOMI ER, et al. Nitinol: From historical milestones to functional properties and biomedical applications. Proc Inst Mech Eng H. 2022;236(11):1595-1612.
[22] DULSKI M, DUDEK K, CHALON D, et al. Toward the development of an innovative implant: NiTi alloy functionalized by multifunctional beta-TCP+Ag/SiO(2) coatings. ACS Appl Bio Mater. 2019;2(3):987-998.
[23] DULSKI M, GAWECKI R, SUŁOWICZ S, et al. Key properties of a bioactive Ag-SiO(2)/TiO(2) coating on NiTi shape memory alloy as necessary at the development of a new class of biomedical materials. Int J Mol Sci. 2021;22(2):507.
[24] 孙浚源,张煜宸,王连雷,等.激光增材制造骨科用NiTi形状记忆合金的细胞毒性与生物相容性研究[J].中华骨与关节外科杂志,2023, 16(1):37-44.
[25] ZHU Z, GUO D, XU J, et al. Processing characteristics of micro electrical discharge machining for surface modification of TiNi shape memory alloys using a TiC powder dielectric. Micromachines (Basel). 2020;11(11):1018.
[26] 高丽,胡少辉,辛向阳,等.Ni-Co-Mn-Sn-Gd磁性形状记忆合金微观组织、力学性能和耐腐蚀性能[J].材料工程,2023,51(6):111-119.
[27] 邹芹,党赏,李艳国,等.Fe-基形状记忆合金的研究进展[J].材料导报, 2019,33(23):3955-3962.
[28] PUSHIN V, KURANOVA N, MARCHENKOVA E, et al. Design and development of Ti-Ni, Ni-Mn-Ga and Cu-Al-Ni-based alloys with high and low temperature shape memory effects. Materials (Basel). 2019;12(16):2616.
[29] 朱虹,刘子卿,董志强,等.基于铁基形状记忆合金的新型预应力技术及其工程应用[J].东南大学学报(自然科学版),2022,52(2):402-416.
[30] 黄海友,王伟丽,刘记立,等.Cu基形状记忆合金的应用进展[J].中国材料进展,2016,35(12):919-926.
[31] 鲁友均,宋迪,苗常青.温控形状记忆合金的驱动响应模型[J].中国机械工程,2023,34(2):157-163.
[32] 袁发鹏,黄金.形状记忆合金温控开关驱动特性分析及试验[J].现代制造工程,2018(3):23-27,52.
[33] HIGUCHI S, OKADA H, TAKAMATSU S, et al. Valve-actuator-integrated reference electrode for an ultra-long-life rumen pH sensor. Sensors (Basel). 2020;20(5):1249.
[34] KASHEF TABRIZIAN S, TERRYN S, CORNELLà AC, et al. Assisted damage closure and healing in soft robots by shape memory alloy wires. Sci Rep. 2023;13(1):8820.
[35] HOU Z, LIU Z, ZHU X, et al. Contactless treatment for scoliosis by electromagnetically controlled shape-memory alloy rods: a preliminary study in rabbits. Eur Spine J. 2020;29(5):1147-1158.
[36] 鲁军,杨宽,王凤翔.磁控形状记忆合金振动传感器模型及实验特性[J].电机与控制学报,2014,18(3):20-24.
[37] ANDREASEN GF, BRADY PR. A use hypothesis for 55 Nitinol wire for orthodontics. Angle Orthod. 1972;42(2):172-177.
[38] ANDREASEN GF, MORROW RE. Laboratory and clinical analyses of nitinol wire. Am J Orthod. 1978;73(2):142-151.
[39] KUNTZ ML, VADORI R, KHAN MI. Review of superelastic differential force archwires for producing ideal orthodontic forces: an advanced technology potentially applicable to orthognathic surgery and orthopedics. Curr Osteoporos Rep. 2018;16(4):380-386.
[40] SIU ASC, CHOW JKF, AU YEUNG BHC, et al. Treating an edentulous mandible with an implant-supported prosthesis with a shape-memory alloy abutment system. J Prosthet Dent. 2020;123(6):775-780.
[41] SAITO K, JANG I, KUBOTA K, et al. Removable orthodontic appliance with nickel-titanium spring to reposition the upper incisors in an autistic patient. Spec Care Dentist. 2013;33(1):35-39.
[42] 尹玉霞,王鲁宁,郝树斌,等.医用镍钛记忆合金在微创介入领域的应用[J].中国医疗设备,2019,34(6):153-156.
[43] SHENG J, WANG X, DICKFELD TL, et al. Towards the development of a steerable and mri-compatible cardiac catheter for atrial fibrillation treatment. IEEE Robot Autom Lett. 2018;3(4):4038-4045.
[44] HILL AC, MARONEY TP, VIRMANI R. Facilitated coronary anastomosis using a nitinol U-Clip device: bovine model. J Thorac Cardiovasc Surg. 2001; 121(5):859-870.
[45] SALEMIZADEH PARIZI F, MEHRABI R, KARAMOOZ-RAVARI MR. Finite element analysis of NiTi self-expandable heart valve stent. Proc Inst Mech Eng H. 2019;233(10):1042-1050.
[46] BUNTE MC, COHEN DJ, JAFF MR, et al. Long-term clinical and quality of life outcomes after stenting of femoropopliteal artery stenosis: 3-year results from the STROLL study. Catheter Cardiovasc Interv. 2018;92(1):106-114.
[47] NAIR VS, NACHIMUTHU R. The role of NiTi shape memory alloys in quality of life improvement through medical advancements: a comprehensive review. Proc Inst Mech Eng H. 2022;236(7):923-950.
[48] MüLLER CW, PFEIFER R, MEIER K, et al. A novel shape memory plate osteosynthesis for noninvasive modulation of fixation stiffness in a rabbit tibia osteotomy model. BioMed research international. 2015;2015:652940.
[49] KRäMER M, MüLLER CW, HERMANN M, et al. Design considerations for a novel shape-memory-plate osteosynthesis allowing for non-invasive alteration of bending stiffness. J Mech Behav Biomed Mater. 2017;75:558-566.
[50] DüNNWEBER LH, RöDL R, GOSHEGER G, et al. Evaluation of the SMALL nail: Drive technology and behavior in situ. Med Eng Phys. 2016;38(12):1518-1523.
[51] WU JC, MILLS A, GRANT KD, et al. Fracture fixation using shape-memory (ninitol) staples. Orthop Clin North Am. 2019;50(3):367-374.
[52] ZHANG Y, WANG P, XIA Y, et al. Application of a shape-memory alloy concentrator in displaced patella fractures: technique and long-term results. J Knee Surg. 2017;30(2):166-173.
[53] XIA D, ZHOU P, LI L, et al. Application of a novel shape-memory alloy concentrator in displaced olecranon fractures: a report of the technique and mid-term clinical results. J Orthop Surg Res. 2020;15(1):453.
[54] 李文娇,马春宝,赵丙辉,等.镍钛形状记忆合金植入物在骨科的应用[J].生物骨科材料与临床研究,2022,19(1):89-91.
[55] QIAOLING L, ZHIWEI R, BOBO Z, et al. A preliminary study on the morphological changes of an NiTi-shaped memory alloy stent in the vertebral body. Orthop Surg. 2023;15(4):1028-1036.
[56] GRUNERT R, WAGNER M, ROTSCH C, et al. Concept of patient-specific shape memory implants for the treatment of orbital floor fractures. Oral Maxillofac Surg. 2017;21(2):179-185.
[57] NAGARAJA S, PELTON AR. Corrosion resistance of a Nitinol ocular microstent: Implications on biocompatibility. J Biomed Mater Res B Appl Biomater. 2020;108(6):2681-2690.
[58] 张国萍,翁雪玲,黄志红.镍钛形状记忆合金网状支架矫正单侧唇裂鼻畸形术的护理[J].现代临床护理,2002,1(3):6-8.
[59] HASSOULAS IA, LADOPOULOS VS, KALOGERAKOS PD. Study of shape memory alloy fibers for the development of artificial myocardium. Hellenic J Cardiol. 2010;51(4):301-309.
[60] AARNINK KM, HALFWERK FR, SAID SAM, et al. Technical feasibility and design of a shape memory alloy support device to increase ejection fraction in patients with heart failure. Cardiovasc Eng Technol. 2019;10(1):1-9.
[61] WANG M, LIU Y, NONG Q, et al. Experimental assessment of a novel artificial anal sphincter with shape memory alloy. Artif Organs. 2022;46(6):1097-1106.
[62] 尹海斌,薛欢,章志大,等.形状记忆合金驱动的仿人腕关节机构理论与运动控制[J].机械科学与技术,2023,42(2):181-189.
[63] HU B, LIU F, MAO B, et al. Modeling and position control simulation research on shape memory alloy spring actuator. Micromachines (Basel). 2022;13(2):178.
[64] DE LAURENTIS KJ, MAVROIDIS C. Mechanical design of a shape memory alloy actuated prosthetic hand. Technol Health Care. 2002;10(2):91-106.
[65] SORIANO-HERAS E, BLAYA-HARO F, MOLINO C, et al. Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator. J Artif Organs. 2018;21(2):238-246.
[66] ANDRIANESIS K, TZES A. Development and control of a multifunctional prosthetic hand with shape memory alloy actuators. J Intell Robot Syst. 2015;78(2):257-289.
[67] SIMONE F, RIZZELLO G, SEELECKE S, et al. A soft five-fingered hand actuated by shape memory alloy wires: design, manufacturing, and evaluation. Front Robot AI. 2020;7:608841.
[68] GAUTAM A, CALLEJAS MA, ACHARYYA A, et al. Shape-memory-alloy-based smart knee spacer for total knee arthroplasty: 3D CAD modelling and a computational study. Med Eng Phys. 2018;55:43-51.
[69] HEYWOOD RL, QUICK ME, ATLAS MD. Long-term audiometric and clinical outcomes following stapedectomy with the shape memory nitinol stapes prosthesis. Otol Neurotol. 2019;40(2):164-170.
[70] LE BV, MCVARY KT, MCKENNA K, et al. Use of magnetic induction to activate a “touchless” shape memory alloy implantable penile prosthesis. J Sex Med. 2019;16(4):596-601.
[71] CHAN WY, YIP J, YICK KL, et al. Mechanical and clinical evaluation of a shape memory alloy and conventional struts in a flexible scoliotic brace. Ann Biomed Eng. 2018;46(8):1194-1205.
[72] PITTACCIO S, GARAVAGLIA L, VISCUSO S, et al. Implementation, testing and pilot clinical evaluation of superelastic splints that decrease joint stiffness. Ann Biomed Eng. 2013;41(9):2003-2017.
[73] PITTACCIO S, GARAVAGLIA L, CERIOTTI C, et al. Applications of shape memory alloys for neurology and neuromuscular rehabilitation. J Funct Biomater. 2015;6(2):328-344.
[74] COPACI D, CANO E, MORENO L, et al. New design of a soft robotics wearable elbow exoskeleton based on shape memory alloy wire actuators. Appl Bionics Biomech. 2017;2017:1605101.
[75] HOPE J, MCDAID A. Development of wearable wrist and forearm exoskeleton with shape memory alloy actuators. J Intell Robot Syst. 2017;86(3-4):397-417.
[76] GARAVAGLIA L, PAGLIANO E, LOMAURO A, et al. Design and custom fabrication of specialized orthoses for the upper-limb stabilization in childhood dyskinesia. Prosthet Orthot Int. 2022;46(6):625-632.
[77] TIAN F, HEFZY MS, ELAHINIA M. State of the art review of knee-ankle-foot orthoses. Ann Biomed Eng. 2015;43(2):427-441.
[78] TIAN F, HEFZY MS, ELAHINIA M. A biologically inspired knee actuator for a KAFO. J Med Devices. 2016;10(4):045001.
[79] SADEGHIAN F, ZAKERZADEH MR, KARIMPOUR M, et al. Compliant orthoses for repositioning of knee joint based on super-elasticity of shape memory alloys. J Intel Mat Syst Str. 2018;29(15):3136-3150.
[80] PITTACCIO S, VISCUSO S, BERETTA E, et al. Pilot studies suggesting new applications of NiTi in dynamic orthoses for the ankle joint. Prosthet Orthot Int. 2010;34(3):305-318.
[81] MATAEE MG, ANDANI MT, ELAHINIA M. Adaptive ankle-foot orthoses based on superelasticity of shape memory alloys. J Intel Mat Syst Str. 2015; 26(6):639-651.
[82] AMERINATANZI A, ZAMANIAN H, SHAYESTEH MOGHADDAM N, et al. Application of the superelastic NiTi spring in ankle foot orthosis (AFO) to create normal ankle joint behavior. Bioengineering (Basel). 2017;4(4):95.
[83] TABATA N. A simple management of curved nail deformity by using a shape memory alloy device: report of four treated cases. Int J Dermatol. 2015;54(5):573-575.
[84] TOTH L, SCHIFFER A, NYITRAI M, et al. Developing an anti-spastic orthosis for daily home-use of stroke patients using smart memory alloys and 3D printing technologies. Mater Design. 2020;195:109029.
[85] 童海洲,郑益略,孙晓梅,等.非对称性经缝牵引成骨术在青少年单侧唇腭裂严重面中部骨骼发育不全中的应用[J].中华整形外科杂志, 2022,38(1):9-16.
[86] 封凯迪,杨岩.基于SMA的手部康复训练装置的设计[J].机械传动, 2020,44(2):144-149.
[87] 王扬威,吕佩伦,郑舒方,等.形状记忆合金驱动手指功能康复外骨骼设计[J].浙江大学学报(工学版),2022,56(12):2340-2348.
[88] XIE Q, MENG Q, YU W, et al. Design of a SMA-based soft composite structure for wearable rehabilitation gloves. Front Neurorobot. 2023;17:1047493.
[89] HADI A, AKBARI H, TARVIRDIZADEH B, et al. Developing a novel continuum module actuated by shape memory alloys. Sens Actuator A Phys. 2016; 243:90-102.
[90] PINGALE P, DAWRE S, DHAPTE-PAWAR V, et al. Advances in 4D printing: from stimulation to simulation. Drug Deliv Transl Res. 2023;13(1):164-188.
[91] LIU Q, WANG W, REYNOLDS MF, et al. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics. Sci Robot. 2021;6(52):eabe6663. |