中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (11): 2411-2420.doi: 10.12307/2025.361

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    

机器学习识别LRRC15和MICB为类风湿关节炎的免疫诊断标志物

田彦虎1,黄心岸1,郭桐桐1,如斯坦木·阿合坦木1,罗江淼1,肖  遥1,王  超2,王维山2   

  1. 1石河子大学医学院,新疆维吾尔自治区石河子市  832008;2石河子大学第一附属医院骨科,新疆维吾尔自治区石河子市  832008
  • 收稿日期:2024-03-22 接受日期:2024-05-22 出版日期:2025-04-18 发布日期:2024-08-13
  • 通讯作者: 王维山,主任医师,教授,硕士生导师,石河子大学第一附属医院骨科,新疆维吾尔自治区石河子市 832008
  • 作者简介:田彦虎,男,1998年生,甘肃省定西市人,汉族,石河子大学在读硕士,主要从事骨科疾病的研究。
  • 基金资助:
    国家自然科学基金项目(82160423),项目负责人:王维山

Machine learning identification of LRRC15 and MICB as immunodiagnostic markers for rheumatoid arthritis

Tian Yanhu1, Huang Xinan1, Guo Tongtong1, Rusitanmu·Ahetanmu1, Luo Jiangmiao1, Xiao Yao1, Wang Chao2, Wang Weishan2     

  1. 1Medical College, Shihezi University, Shihezi 832008, Xinjiang Uygur Autonomous Region, China; 2Department of Orthopedics, the First Affiliated Hospital of Shihezi University Medical College, Shihezi 832008, Xinjiang Uygur Autonomous Region, China  
  • Received:2024-03-22 Accepted:2024-05-22 Online:2025-04-18 Published:2024-08-13
  • Contact: Wang Weishan, Chief physician, Professor, Master’s supervisor, Department of Orthopedics, the First Affiliated Hospital of Shihezi University, Shihezi 832008, Xinjiang Uygur Autonomous Region, China
  • About author:Tian Yanhu, Master candidate, Shihezi University, Shihezi 832008, Xinjiang Uygur Autonomous Region, China
  • Supported by:
    National Natural Science Foundation of China, No. 82160423 (to WWS)

摘要:


文题释义:
类风湿关节炎:是一种常见的慢性自身免疫性结缔组织疾病,主要表现为关节周围疼痛、僵硬和肿胀,关节的畸形和破坏。
机器学习:是一个多领域交叉学科,它利用计算机算法从数据或既往经验中进行学习,并通过分析大量数据来发现规律并优化算法以提升性能,最终做出决策。

背景:类风湿关节炎是一种慢性的自身免疫性疾病,早期诊断对于预防疾病进展和治疗至关重要。因此探究类风湿关节炎的诊断特征和免疫细胞浸润具有重要意义。
目的:基于Gene Expression Omnibus(GEO)数据库,通过机器学习算法,筛选类风湿关节炎潜在重要的诊断标记物,并探讨类风湿关节炎的诊断特征与免疫细胞浸润的关系。
方法:从GEO数据库获取类风湿关节炎相关的滑膜组织的基因表达数据集,采用批量效应去除法对数据集进行合并,采用R软件进行差异表达基因的鉴定和功能相关性分析,通过生物信息学分析和3种机器学习算法进行疾病特征基因的提取,筛选出类风湿关节炎相关的关键基因。此外,对所有差异表达基因进行免疫细胞浸润分析,分析类风湿关节炎的炎症状态,并对其诊断特征与浸润性免疫细胞的关系进行研究。
结果与结论:①在类风湿关节炎和正常滑膜组织中,获得了179个差异表达基因,其中124个基因表达上调,55个基因表达下调;②富集分析显示类风湿关节炎和免疫反应之间存在良好的相关性;③通过3种机器学习算法分析发现,LRRC15和MICB可能是类风湿关节炎潜在的标记物;④LRRC15(曲线下面积=0.964,95%CI:0.924-0.992)和MICB(曲线下面积=0.961,95%CI:0.923-0.990)在验证数据集上有着较强的诊断能力;⑤13种免疫细胞浸润发生改变,以巨噬细胞为主;⑥在类风湿关节炎中,免疫细胞功能的多数促炎途径被激活;⑦免疫相关性分析发现LRRC15和MICB与M1型巨噬细胞的相关性最强;⑧结果发现LRRC15和MICB被确定为类风湿关节炎潜在的诊断标记物,具有较强的诊断性能并且与免疫细胞浸润具有显著的相关性;通过机器学习及生物信息学分析加深了对类风湿关节炎免疫浸润的理解,为类风湿关节炎的诊断和治疗提供新的思路。
https://orcid.org/0009-0007-5371-4292(田彦虎)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 类风湿关节炎, 机器学习, 免疫浸润, 诊断标记物, 差异表达基因

Abstract: BACKGROUND: Rheumatoid arthritis is a chronic autoimmune disease. Early diagnosis is crucial for preventing disease progression and for effective treatment. Therefore, it is of significance to investigate the diagnostic characteristics and immune cell infiltration of rheumatoid arthritis.
OBJECTIVE: Based on the Gene Expression Omnibus (GEO) database, to screen potential diagnostic markers of rheumatoid arthritis using machine learning algorithms and to investigate the relationship between the diagnostic characteristics of rheumatoid arthritis and immune cell infiltration in this pathology.
METHODS: The gene expression datasets of synovial tissues related to rheumatoid arthritis were obtained from the GEO database. The data sets were merged using a batch effect removal method. Differential expression analysis and functional correlation analysis of genes were performed using R software.  Bioinformatics analysis and three machine learning algorithms were used for the extraction of disease signature genes, and key genes related to rheumatoid arthritis were screened. Furthermore, we analyzed immune cell infiltration on all differentially expressed genes to examine the inflammatory state of rheumatoid arthritis and investigate the correlation between their diagnostic characteristics and infiltrating immune cells.
RESULTS AND CONCLUSION: In both rheumatoid arthritis and normal synovial tissues, we identified 179 differentially expressed genes, with 124 genes up-regulated and 55 genes down-regulated. Enrichment analysis revealed a significant correlation between rheumatoid arthritis and immune response. Three machine learning algorithms identified LRRC15 and MICB as potential biomarkers of rheumatoid arthritis. LRRC15 (area under the curve=0.964, 95% confidence interval: 0.924-0.992) and MICB (area under the curve=0.961, 95% confidence interval: 0.923-0.990) demonstrated strong diagnostic performance on the validation dataset. The infiltration of 13 types of immune cells was altered, with macrophages being the most affected. In rheumatoid arthritis, the majority of proinflammatory pathways in immune cell function were activated. Immunocorrelation analysis revealed that LRRC15 and MICB had the strongest correlation with M1 macrophages. To conclude, this study identified LRRC15 and MICB as potential diagnostic markers for rheumatoid arthritis, with strong diagnostic performance and significant correlation with immune cell infiltration. Machine learning and bioinformatics analysis deepened the understanding of immune infiltration in rheumatoid arthritis and provided new ideas for the diagnosis and treatment of rheumatoid arthritis.

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

Key words: rheumatoid arthritis, machine learning, immune infiltration, diagnostic marker, differentially expressed gene

中图分类号: