中国组织工程研究 ›› 2011, Vol. 15 ›› Issue (29): 5321-5324.doi: 10.3969/j.issn.1673-8225.2011.29.001

• 组织工程骨及软骨材料 tissue-engineered bone and cartilage materials •    下一篇

复合抗肿瘤珊瑚羟基磷灰石人工骨的体内成骨

杨进城1,林  骏2,张  余1,尹庆水1   

  1. 1解放军广州军区广州总医院骨科,广东省广州市  510010
    2南方医科大学细胞生物学教研室,广东省广州市  510515
  • 收稿日期:2011-01-21 修回日期:2011-03-11 出版日期:2011-07-16 发布日期:2011-07-16
  • 作者简介:杨进城☆,男,1975年生,福建省漳浦县人,汉族,2007年南方医科大学毕业,博士,主治医师,主要从事人工骨及脊柱外科研究。
  • 基金资助:

    全军医学科学技术研究"十一五"计划第二批课题专项 (08Z010)资助。

Osteogenesis study of compound antitumor coral hydroxyapatite in vivo

Yang Jin-cheng1, Lin Jun2, Zhang Yu1, Yin Qing-shui1   

  1. 1Department of Orthopedic Surgery, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou  510010, Guangdong Province, China
    2Department of Cell Biology, Southern Medical University, Guangzhou  510515, Guangdong Province, China
  • Received:2011-01-21 Revised:2011-03-11 Online:2011-07-16 Published:2011-07-16
  • About author:Yang Jin-cheng☆ Doctor, Attending physician, Department of Orthopedic Surgery, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou 510010, Guangdong Province, China ycheng75@126.com
  • Supported by:

    the Program of Science and Technology Project of the Eleventh Five-year Plan of Chinese PLA, No. 08Z010*

摘要:

背景:复合抗肿瘤珊瑚羟基磷灰石人工骨在体内外有良好的缓释效果及抗肿瘤作用,但由于其所复合药物量较大,植入体内骨缺损处较高的局部药物浓度是否影响骨的正常诱导、传导及生长?
目的:建立复合抗肿瘤珊瑚羟基磷灰石人工骨成骨模型,进一步分析复合抗肿瘤珊瑚羟基磷灰石人工骨的体内成骨效应及规律。
方法:分别将珊瑚羟基磷灰石人工骨及复合抗肿瘤珊瑚羟基磷灰石人工骨植入兔股骨两干骺端骨缺损模型,定期观察股骨X射线影像,并取材行组织病理切片,观察材料降解和被新骨替代的速度、骨与材料界面的结合情况,材料内部新骨生长情况。
结果与结论:珊瑚羟基磷灰石人工骨植入后与周围骨形成组织及骨桥连接较复合抗肿瘤珊瑚羟基磷灰石人工骨快,植入4周后X射线片影像及组织切片示珊瑚羟基磷灰石人工骨边缘开始逐渐不清,并逐步与动物骨形成骨愈合。复合抗肿瘤珊瑚羟基磷灰石人工骨植入后早期8周内局部以抑制组织细胞生长为主,6~12周逐渐有组织结构向材料孔隙内生长且逐渐出现成骨细胞、骨基质及骨细胞,新生骨逐渐生长替代融合,26周左右与周围骨形成骨愈合。说明复合抗肿瘤珊瑚羟基磷灰石人工骨植入早期虽对骨愈合有一定的抑制作用,但最终仍可自行与周围骨缺损达到骨愈合。

关键词: 珊瑚, 羟基磷灰石, 顺铂, 人工骨, 成骨效应

Abstract:

BACKGROUND: Compound antitumor coral hydroxyapatite (CCHA) has a good delayed-release and anti-tumor effect. However, whether the high-dose drug contained in the CCHA influences normal induction, conduction and growth of bone tissues at the implant site is unclear.
OBJECTIVE: To establish an osteogenesis model of CCHA and to investigate the osteogensis effect and rule of self-made CCHA in vivo.
METHODS: Implants of CCHA (20%CDDP-CHA w/w) and CHA(control, 0% CDDP w/w) were implanted into the metaphyseal holes of rabbit femur. X-rays and decalcified histological section of rabbit femoral bone with hematoxylin and eosin staining were used regularly to investigate the degradation of CCHA and CHA, and how bone tissues grow at the implant site.
RESULTS AND CONCLUSION: After implantation, CHA crystals were faster than CCHA in connecting with surrounding bone tissues and forming bone bridges. The borderlines of implanted CHA became obscure in 4 weeks. Loose connective tissues were found in pores of the CHA and osteoblasts were growing on the surface. Bone tissues of the surrounding gradually grew into the CHA, finally repaired the bone defects. At the beginning of implantation, CCHA mainly inhibited the growth of surrounding tissues until 6-12 weeks later, normal bone tissues gradually grew into pores of CCHAs, and healed bone defects at 26 weeks. CCHA can inhibit the osteogenesis effects at early stage; however, it can achieve bone healing with surrounding bone defect ultimately.

中图分类号: