Chinese Journal of Tissue Engineering Research ›› 2014, Vol. 18 ›› Issue (37): 6046-6050.doi: 10.3969/j.issn.2095-4344.2014.37.026
Previous Articles Next Articles
Yan Xue-jing1, Wang Xin-ling2, Yang Mi-mi3, Hou Wei-jian4
Revised:
2014-08-16
Online:
2014-09-03
Published:
2014-09-03
Contact:
Hou Wei-jian, M.D., Professor, Department of Tissue Engineering, School of Basic Medicine, China Medical University, Shenyang 110001, Liaoning Province, China
About author:
Yan Xue-jing, China Medical University, Shenyang 110001, Liaoning Province, China
CLC Number:
Yan Xue-jing, Wang Xin-ling, Yang Mi-mi, Hou Wei-jian . Intranasal delivery of bone marrow mesenchymal stem cells for brain injuries: how many questions to be verified?[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(37): 6046-6050.
2.1 骨髓间充质干细胞的优越性 2.1.1 骨髓间充质干细胞 骨髓间充质干细胞来源于胚胎中胚层,在适当的条件下可以分化为骨细胞、软骨细胞、肌细胞、脂肪细胞、内皮细胞和神经胶质细胞等[6-7]。同时,有研究表明骨髓间充质干细胞具有分化成神经样细胞的能力[8]。因此,骨髓间充质干细胞移植用于治疗中枢神经系统疾病具有广阔的应用前景。 2.1.2 骨髓间充质干细胞的优点 取材方便:骨髓间充质干细胞可以从骨髓中分离提取。动物的骨髓间充质干细胞可从动物股骨、胫骨中提取。人的骨髓间充质干细胞主要通过自体骨髓穿刺获得,经体外培养扩增,然后回输体内,安全方便,且不会发生免疫排斥反应。骨髓间充质干细胞较同样具有多向分化潜能的胚胎干细胞具有取材容易,涉及伦理问题少等优点。 制备容易:目前,分离骨髓间充质干细胞的方法主要有免疫磁珠法、密度梯度离心法、全骨髓贴壁培养法。采用免疫磁珠法分离得到的细胞纯度高、周期性慢,具有多分化潜能[9],但步骤复杂、价格昂贵,且对细胞活性具有较大影响[10];密度梯度离心法可以筛选出较高纯度的骨髓间充质干细胞,但其在一段时间内改变了骨髓间充质干细胞生长的外部微环境,影响了细胞的活力[10];全骨髓贴壁培养法可以获得高纯度、活性好、形态均匀的骨髓间充质干细胞[11],且方法简单方便,缺点是初期杂细胞较多。有文献报道说通过免疫磁珠法分离的骨髓间充质干细胞较密度梯度分离的骨髓间充质干细胞具有更强的增殖能力和成神经分化潜能[12]。也有文献认为全骨髓贴壁法与密度梯度离心法相比操作简单,不仅降低了离心和分离液对细胞的损害,也减少了污染机会,节约经费[13]。 抗原性弱、安全性好:骨髓间充质干细胞移植入脑组织后,不仅未发现明显的局部炎症反应和炎细胞浸润[14],并且还可以下调活化的淋巴细胞和抗原提呈细胞的数量,降低相关细胞的增殖能力[5]。一般情况下骨髓间充质干细胞可以在脑内存在数月之久,说明骨髓间充质干细胞移植后未发生明显的免疫排斥反应。如果是采用自体细胞移植,则可完全避免免疫排斥反应。 突变性弱、稳定性好:成熟的间充质干细胞在体外进行传代实验时,不容易发生基因突变和恶性转化。因此,在进行临床治疗时,移植间充质干细胞发生恶性肿瘤的危险性很低[15-16]。 2.2 骨髓间充质干细胞的颅内移植途径 骨髓间充质干细胞移植的成败由以下几个方面决定:移植细胞的种类、移植的方法、细胞的数量、到达目的器官的数量、免疫反应是否发生等方面,其中最为重要的是移植方法[14]。迄今骨髓间充质干细胞的颅内移植途径有以下几种。 2.2.1 直接注射 开颅后将制备的骨髓间充质干细胞直接注入病变部位,这是最早开始进行干细胞植入颅内的移植方法。该方法给被移植者造成手术损伤使得这种方法未能在临床中推广应用。因此,这种移植方法也未被实验室所使用。 2.2.2 侧脑室注射 经过立体定位后将细胞直接注射到侧脑室,通过脑脊液到达病变部位。此法与直接注射相比不需要开颅,但对实验的仪器和实验者的技术要求很高。由于该方法主要是将细胞植入到特定的侧脑室病变部位,而不适合广泛脑损伤[2]。 2.2.3 经动脉移植 经动脉移植是运用插管技术移植细胞,要求操作者具有一定的技术。经动脉移植相对于后面介绍的经静脉移植可以将移植细胞更准确的运送到目的部位,避免了细胞的浪费[17],因为静脉移植一部分细胞可能残留于肺循环中[1]。但是,经动脉移植所造成的微血栓导致堵塞血管的问题需要亟待解决[18]。同时,也有文献指出经动脉移植方法的安全性低于经静脉移植方法[3]。 2.2.4 经静脉移植 经静脉移植作为一种非侵袭性、并发症少的移植手段被广泛应用[19]。但是经静脉移植方法,细胞能否通过血脑屏障还有待进一步验证[20]。有研究认为局部血脑屏障的损坏和多种导致炎症反应的机制包括上调细胞黏附分子的表达[21],是导致骨髓间充质干细胞穿过血脑屏障的可能原因[4]。该方法使细胞到达其他部位的数目远远多于到达颅内的数量[22]。在这一点上,经动脉移植方法要优于经静脉移植方法[23-24]。但是,近来有文献认为这两种移植方法治疗脑缺血疾病的效果相同[25]。 2.2.5 经腰椎穿刺移植 腰椎穿刺移植是运用腰椎穿刺的方法[26],将干细胞直接注射到脑脊液,进而通过脑皮质进入到脑实质内。此种方法细胞进入颅内的数量很可观。但有研究显示,腰椎穿刺的方法可以导致头痛、感染等并发症的发生。 2.2.6 经鼻内移植 经鼻内途径可以将药物、氨基酸、蛋白质、基因载体、细菌等植入颅内。将干细胞通过鼻内途径植入颅内的方法作为一种新兴的移植手段越来越受到关注。下面就经鼻内移植这一新兴的移植途径开展的颅内骨髓间充质干细胞移植进行详细介绍。 2.3 经鼻内途径的颅内骨髓间充质干细胞移植 经鼻内途径移植作为一种非侵害性的方法,具有很多优点:首先,由于鼻部解剖结构距离脑部较近,细胞不必经过较长的路径即可接近脑组织。其次,鼻腔黏膜具有丰富的血管和淋巴管[27],吸收面积大,具有进入颅内的便利条件。但鼻内移植途径也存在一些问题,如个体差异比较大,鼻黏膜具有黏膜纤毛清除系统[27],而最大的问题是对某些物质吸收具有限制作用:对体积较大、脂溶性弱的物质不容易吸收。 2.3.1 鼻黏膜的预处理 Danielyan等[14]用透明质酸酶预先处理鼻黏膜,1 h后再进行骨髓间充质干细胞移植,细胞移植1 h后观察发现,用透明质酸酶处理的小鼠骨髓间充质干细胞的数量明显多于未处理的小鼠,其中以嗅球部尤为明显。因而可以得出,透明质酸酶可以增加骨髓间充质干细胞进入颅内的数量。Vaka等[28]发现薄荷油可以通过打开嗅上皮细胞间紧密连接从而增加鼻黏膜的通透性。因此认为,透明质酸酶、薄荷油都具有增加鼻黏膜通透性的作用。 2.3.2 骨髓间充质干细胞移植入脑途径 目前认为,细胞通过鼻内途径入脑主要有两种路径:一种是通过鼻黏膜途径,另一种是通过血管旁途径。 鼻黏膜途径:分为两种路径,一种为细胞通过嗅上皮细胞到达嗅球入脑。Danielyan等[14]实验证明了骨髓间充质干细胞通过嗅球途径入脑的两种路径:骨髓间充质干细胞可以通过嗅球直接进入脑实质,也可以通过嗅球进入脑脊液再通过皮质进入到脑实质。另一种为细胞通过呼吸上皮细胞进入三叉神经入脑。有研究表明麦胚凝集素辣根过氧化物酶可以通过三叉神经途径到达脑干[29-30]。细菌和病毒也可能通过三叉神经途径到达中枢神经系统[30-31]。但还未有相关实验证明骨髓间充质干细胞也可以通过三叉神经途径入脑。 血管旁途径:鼻部具有丰富的脉管系统,一些静脉可以穿过筛板与其他血管伴行到达脑前叶。推测神经前体细胞可以通过与细胞外基质和血管周的星形胶质细胞相互作用,从而沿着血管迁移入脑[32]。但是还未有关于骨髓间充质干细胞沿着此途径进行迁移的相关报道。 2.3.3 骨髓间充质干细胞的标记与颅内骨髓间充质干细胞的观察 骨髓间充质干细胞主要用荧光标记法进行标记,包括用荧光染料标记细胞和利用绿色荧光蛋白转基因小鼠细胞两种方法。最近有报道绿色荧光蛋白的表达不影响骨髓间充质干细胞在脑内的生存情况[33]。Danielyan等[14]采用Hoechst 33342荧光染料和CFDA荧光染料标记骨髓间充质干细胞,经鼻腔移植入脑,1 h后在嗅球、皮质、丘脑、海马等部位发现了骨髓间充质干细胞的存在。van Velthoven等[34]采用PKH-26荧光染料标记骨髓间充质干细胞,18 d后在嗅球、海马部位发现了骨髓间充质干细胞的存在。Danielyan等[35]用转染绿色荧光蛋白基因的骨髓间充质干细胞对小鼠进行移植,4 h后甚至6.7个月后在嗅球、皮质等部位都发现了骨髓间充质干细胞的存在。 Chartoff等[36]用转染绿色荧光蛋白基因的骨髓间充质干细胞通过鼻内途径移植,在移植后的3 h,1 d,7 d,2个月之后的小鼠颅内都没有观察到骨髓间充质干细胞的存在。而通过直接注射到纹状体途径的标本中则观察到了骨髓间充质干细胞的存在。由于发现了在未受损伤的嗅球部和损伤的纹状体部均有明显的自发荧光存在,因此认为有将自发荧光与用绿色荧光蛋白标记的骨髓间充质干细胞相混淆的可能。排除这些可能影响实验结果的因素后,有报告认为通过鼻内途径移植细胞未成功的原因在于细胞未穿过鼻黏膜,因此未能进入颅内。另外,Bossolasco等[37]也作出了相似的实验结果。因此骨髓间充质干细胞通过鼻内途径移植是否确切地进入到颅内还需更多实验进行验证。 近来,有文献报道通过近红外技术观察活体小鼠内用NIR815标记的骨髓间充质干细胞的迁移情况。该方法从多角度跟踪活体中被标记的细胞,可减少实验所需动物的数量,避免了繁琐复杂的实验过程,并且所得结果与用正常免疫组化和荧光标记的结果相同[37]。因此,近红外技术可以作为一种新的方法用于标记细胞的观察。 2.3.4 动物实验 van Velthoven等[34]成功通过鼻内途径将骨髓间充质干细胞移植入缺血缺氧脑损伤模型小鼠颅内,并认为骨髓间充质干细胞主要通过刺激内源性修复来改善颅内环境。Danielyan等[35]将骨髓间充质干细胞成功移植到帕金森模型的小鼠颅内,认为骨髓间充质干细胞主要发挥神经保护作用功能和抗炎症功能。由于实验者观察到大量骨髓间充质干细胞可以快速到达脑干、脊髓部位,因此认为鼻内移植途径对于治疗脑干、脊髓损伤的疾病尤为有效,包括脑干梗死、肌萎缩性侧束硬化症等。Donega等[38]成功观察到经鼻内途径移植的骨髓间充质干细胞存在于脑损伤后3-10 d的模型中。这些研究结果说明,经鼻内途径移植可以治疗多种颅内疾病并且其治疗窗宽,具有广阔的临床应用前景。 根据上述关于骨髓间充质干细胞经鼻内途径的颅内移植的文献介绍,作者认为骨髓间充质干细胞可以通过鼻内途径移植到颅内,但是移植效果受多方面条件影响,其中最关键的是如何高效快速的将骨髓间充质干细胞通过鼻黏膜、血脑屏障进入颅内。而对于持否定观点的文献,作者认为可能是由于移植细胞数量不够、移植条件的不同、个体差异等原因造成。至于损伤组织自发荧光现象,可以采用自发荧光淬灭剂进行处理后再进行验证。另外如何高效、准确的观察骨髓间充质干细胞在移植过程中的迁移情况也应给予高度重视。"
[1] Kopen GC, Prockop DJ, Phinney DG.Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains.Proc Natl Acad Sci U S A. 1999;96(19):10711-10716. [2] Einstein O, Friedman-Levi Y, Grigoriadis N,et al. Transplanted neural precursors enhance host brain-derived myelin regeneration.J Neurosci. 2009;29(50):15694-15702. [3] Li L, Jiang Q, Ding G,et al. Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study.J Cereb Blood Flow Metab. 2010;30(3):653-662. [4] Harting MT, Jimenez F, Xue H,et al.Intravenous mesenchymal stem cell therapy for traumatic brain injury.J Neurosurg. 2009; 10(6):1189-1197. [5] Karussis D, Karageorgiou C, Vaknin-Dembinsky A,et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis.Arch Neurol. 2010;67(10): 1187-1194. [6] Pittenger MF, Mackay AM, Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells.Science. 1999;284(5411):143-147. [7] Sanchez-Ramos J, Song S, Cardozo-Pelaez F,et al.Adult bone marrow stromal cells differentiate into neural cells in vitro.Exp Neurol. 2000;164(2):247-256. [8] Brazelton TR, Rossi FM, Keshet GI,et al.From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000;290(5497):1775-1779. [9] 韩圣,夏照帆,韦多,等.应用免疫磁珠负选法分离与纯化小鼠骨髓间充质干细胞[J].中国临床康复,2006,10(41):28-30. [10] 李晓峰,赵劲民,苏伟,等.大鼠骨髓间充质干细胞的培养与鉴定[J].中国组织工程研究与临床康复,2011,15(10):1721-1725. [11] 蔡鹏,朱绍兴,苏一鸣,等.全骨髓贴壁法分离培养大鼠骨髓间充质干细胞及其诱导分化[J].中国组织工程研究与临床康复,2009, 13(36):7073-7077. [12] 徐鹏,舒畅,赵子义,等.免疫磁珠法分离纯化骨髓间充质干细胞及向神经细胞定向分化[J].中国组织工程研究与临床康复,2007, 11(20):3872-3875. [13] 杨丽,张荣华,谢厚杰,等.建立大鼠骨髓间充质干细胞稳定分离培养体系与鉴定[J].中国组织工程研究与临床康复,2009, 13(6): 1064-1068. [14] Danielyan L, Schäfer R, von Ameln-Mayerhofer A,et al. Intranasal delivery of cells to the brain.Eur J Cell Biol. 2009; 88(6):315-324. [15] Izadpanah R, Trygg C, Patel B,et al.Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue.J Cell Biochem. 2006;99(5):1285-1297. [16] Lee K, Majumdar MK, Buyaner D, et al. Human mesenchymal stem cells maintain transgene expression during expansion and differentiation.Mol Ther. 2001;3(6):857-866. [17] Walczak P, Zhang J, Gilad AA,et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia.Stroke. 2008;39(5):1569-1574. [18] Tolar J, O'shaughnessy MJ, Panoskaltsis-Mortari A,et al. Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells.Blood. 2006;107(10): 4182-4188. [19] Lee JS, Hong JM, Moon GJ, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke.Stem Cells. 2010;28(6):1099-1106. [20] Inoue M, Honmou O, Oka S,et al. Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord.Glia. 2003;44(2):111-118. [21] Fang J, Hall BK.Differential expression of neural cell adhesion molecule (NCAM) during osteogenesis and secondary chondrogenesis in the embryonic chick.Int J Dev Biol. 1995; 39(3):519-528. [22] Gao J, Dennis JE, Muzic RF,et al.The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion.Cells Tissues Organs. 2001;169(1):12-20. [23] Pendharkar AV, Chua JY, Andres RH,et al. Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia.Stroke. 2010;41(9):2064-2070. [24] Ruan GP, Han YB, Wang TH,et al.Comparative study among three different methods of bone marrow mesenchymal stem cell transplantation following cerebral infarction in rats.Neurol Res. 2013;35(2):212-220. [25] Vasconcelos-dos-Santos A, Rosado-de-Castro PH, Lopes de Souza SA,et al. Intravenous and intra-arterial administration of bone marrow mononuclear cells after focal cerebral ischemia: Is there a difference in biodistribution and efficacy. Stem Cell Res. 2012;9(1):1-8. [26] Walker PA, Harting MT, Jimenez F,et al.Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NFkappaB-mediated increase in interleukin-6 production.Stem Cells Dev. 2010;19(6):867-876. [27] Lochhead JJ, Thorne RG.Intranasal delivery of biologics to the central nervous system.Adv Drug Deliv Rev. 2012;64(7): 614-628. [28] Vaka SR, Murthy SN.Enhancement of nose-brain delivery of therapeutic agents for treating neurodegenerative diseases using peppermint oil.Pharmazie. 2010;65(9):690-692. [29] Anton F, Peppel P.Central projections of trigeminal primary afferents innervating the nasal mucosa: a horseradish peroxidase study in the rat.Neuroscience. 1991; 41(2-3): 617-628. [30] Deatly AM, Haase AT, Fewster PH,et al.Human herpes virus infections and Alzheimer's disease.Neuropathol Appl Neurobiol. 1990;16(3):213-223. [31] Jin Y, Dons L, Kristensson K,et al. Neural route of cerebral Listeria monocytogenes murine infection: role of immune response mechanisms in controlling bacterial neuroinvasion. Infect Immun. 2001;69(2):1093-1100. [32] Bovetti S, Hsieh YC, Bovolin P,et al. Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb.J Neurosci. 2007;27(22):5976-5980. [33] Moloney TC, Dockery P, Windebank AJ,et al. Survival and immunogenicity of mesenchymal stem cells from the green fluorescent protein transgenic rat in the adult rat brain.Neurorehabil Neural Repair. 2010;24(7):645-656. [34] van Velthoven CT, Kavelaars A, van Bel F,et al. Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage.Pediatr Res. 2010;68(5): 419-422. [35] Danielyan L, Schäfer R, von Ameln-Mayerhofer A,et al.Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease.Rejuvenation Res. 2011;14(1):3-16. [36] Chartoff EH, Damez-Werno D, Sonntag KC,et al. Detection of intranasally delivered bone marrow-derived mesenchymal stromal cells in the lesioned mouse brain: a cautionary report. Stem Cells Int. 2011;2011:586586. [37] Bossolasco P, Cova L, Levandis G,et al. Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson's disease.Int J Nanomedicine. 2012;7:435-447. [38] Donega V, van Velthoven CT, Nijboer CH,et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement.PLoS One. 2013;8(1):e51253. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[3] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[4] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[5] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[6] | Fan Quanbao, Luo Huina, Wang Bingyun, Chen Shengfeng, Cui Lianxu, Jiang Wenkang, Zhao Mingming, Wang Jingjing, Luo Dongzhang, Chen Zhisheng, Bai Yinshan, Liu Canying, Zhang Hui. Biological characteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1002-1007. |
[7] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[8] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[9] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[10] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[11] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[12] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[13] | Wang Shiqi, Zhang Jinsheng. Effects of Chinese medicine on proliferation, differentiation and aging of bone marrow mesenchymal stem cells regulating ischemia-hypoxia microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1129-1134. |
[14] | Kong Desheng, He Jingjing, Feng Baofeng, Guo Ruiyun, Asiamah Ernest Amponsah, Lü Fei, Zhang Shuhan, Zhang Xiaolin, Ma Jun, Cui Huixian. Efficacy of mesenchymal stem cells in the spinal cord injury of large animal models: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1142-1148. |
[15] | Chen Junyi, Wang Ning, Peng Chengfei, Zhu Lunjing, Duan Jiangtao, Wang Ye, Bei Chaoyong. Decalcified bone matrix and lentivirus-mediated silencing of P75 neurotrophin receptor transfected bone marrow mesenchymal stem cells to construct tissue-engineered bone [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 510-515. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||