Chinese Journal of Tissue Engineering Research ›› 2014, Vol. 18 ›› Issue (37): 6034-6039.doi: 10.3969/j.issn.2095-4344.2014.37.024
Previous Articles Next Articles
Jiang Lai1, Zhang Jin-ning2, Chai Yuan1, Li Fu-chun3, Qu Yan-ping4, Ma Xue-ling1
Revised:
2014-07-29
Online:
2014-09-03
Published:
2014-09-03
Contact:
Ma Xue-ling, Associate professor, Associate chief physician, Master’s supervisor, Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
About author:
Jiang Lai, Studying for master’s degree, Physician, Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
Supported by:
the Research Fund for the Doctoral Program of Higher Education in 2012, Ministry of Education, No. 20122307120031; the Fund for Excellent Youth in the Fourth Affiliated Hospital of Harbin Medical University, No. 2013005; Youth Science Fund Project of Heilongjiang Province, No. QC2010003; Scientific Research Project in Heilongjiang Province Department of Education, No. 11551210
CLC Number:
Jiang Lai, Zhang Jin-ning, Chai Yuan, Li Fu-chun, Qu Yan-ping, Ma Xue-ling . The relationship of Slit2 and bone marrow mesenchymal stem cells with the angiogenesis[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(37): 6034-6039.
2.1 骨髓间充质干细胞 2.1.1 骨髓间充质干细胞概述 间充质干细胞是来自于胚胎时期中胚层的一类具有多项分化潜能和自我更新能力的干细胞。广泛存在于全身结缔组织和器官间质内,如脂肪组织、脐血、肝、羊水和胎盘,以及牙髓及其他来源[6-7]。但骨髓组织中的含量最多,它是骨髓内除了造血干细胞之外的另一种干细胞,在骨髓造血过程中起着不可替代的支持和调控造血的作用。 2.1.2 骨髓间充质干细胞的生物学功能 多项分化:骨髓间充质干细胞具有向多种细胞系分化的潜能,在体内外不仅可以分化为中胚层细胞系,还可以分化为内胚层和外胚层细胞系。例如,在一定的条件下可分化为骨、软骨、肌肉[8-9]、脂肪等各种间充质组织的细胞。骨髓间充质干细胞也可分化为非间充质细胞,如肝细胞、神经元、神经胶质细胞等。再加上骨髓间充质干细胞取材广泛,易于分离和体外扩增,也避开了很多伦理道德的问题,这些特性使它成为组织工程和再生医学的理想种子细胞类型[10-11]。 促进组织损伤修复:首先骨髓间充质干细胞具有迁移到受损伤组织的能力,其次它可以通过释放细胞因子、炎症递质、细胞外基质成分,以及抗微生物蛋白等来产生相应的组织修复微环境的能力。目前已有报道骨髓间充质干细胞在肺损伤、肾损伤以及软骨和长骨修复中起着重要作用[12]。在角膜和视网膜损伤模型中,骨髓间充质干细胞迁移到受伤组织已经证明可改善伤口愈合[13]。 旁分泌作用:骨髓间充质干细胞可分泌多种细胞因子[14-16],如白细胞介素6、白细胞介素7、白细胞介素8、白细胞介素10、白细胞介素12、γ-干扰素、集落刺激因子等。其中部分因子在神经细胞发育及分化过程中发挥重要作用。例如白细胞介素1等促进损伤区神经干细胞的存活、增殖和分化,减小损失范围;而集落刺激因子则作为一种重要生长因子及保护因子,还可通过与相应的受体结合促进损伤区神经干细胞增殖、分化,以减小损伤区范围。目前还有研究发现白细胞介素10、γ-干扰素等可抑制T细胞增殖,从而起到免疫调节作用。 骨髓间充质干细胞也可分泌各种各样的神经营养因子,如脑源性神经营养因子、神经生长因子、血管内皮生长因子及其受体、碱性成纤维生长因子等。这些因子能产生神经保护作用和促进局部血管及神经再生,从而治疗神经损伤。例如血管内皮生长因子是目前所知惟一作用于血管内皮的生长因子,它能够促进内皮细胞增殖、从而加快新生血管形成[17-18];同时可以通过ERK1/2信号通路抑制脑缺血早期神经细胞的凋亡[19]。神经生长因子能够拮抗兴奋性氨基酸毒性作用,稳定细胞内Ca2+浓度,增强抗氧化性酶活性,减轻自由基损伤,延缓神经元凋亡。 2.1.3 骨髓间充质干细胞与血管生成 骨髓间充质干细胞与肿瘤:诸多实验观察到骨髓间充质干细胞可以促进肿瘤的生长发展,骨髓间充质干细胞参与构建肿瘤微环境,促进肿瘤血管发生。一方面骨髓间充质干细胞本身可以分化成为内皮细胞、平滑肌细胞等,直接参与肿瘤新生血管形成。另一方面骨髓间充质干细胞可通过外分泌作用分泌一些血管生成因子,可促进肿瘤微环境中血管发生而促进肿瘤血管生成。Fakler等[20]通过对小鼠黑素瘤的研究发现骨髓来源的间充质干细胞向癌组织趋化后,和肿瘤间质融合成为具有内皮细胞特征的细胞,从而促进肿瘤生长。Keung等[21]研究胰腺癌时将动物体内注射骨髓间充质干细胞,可以促进肿瘤的生长,其机制是促使肿瘤组织出现丰富血管系统。但是也有文章报道骨髓间充质干细胞通过Alk信号传导通路的改变对肿瘤的发展有抑制作用[22],这可能与其实验的组织对象,注射骨髓间充质干细胞的时间不同有关。 骨髓间充质干细胞与心脑血管疾病:目前多项研究证实骨髓间充质干细胞移植可应用于心脑血管疾病。Chen等[23]经尾静脉向大脑中动脉闭塞大鼠模型中注入骨髓间充质干细胞,7 d后的感觉实验和14 d后的运动实验明显改善,坏死细胞减少,而碱性成纤维细胞生长因子表达显著增加。专家发现骨髓间充质干细胞可使受体血管生成增加,而血管生成增加是在血管内皮生长因子及血管内皮生长因子受体2介导下进行的。而近年来Ma等[24]建立了大鼠大脑中动脉闭塞模型,并用免疫荧光评估海马α-微管蛋白的表达。最终发现α-微管蛋白在大鼠脑缺血时表达显著减少,这表明α-微管蛋白在脑缺血时是保护性蛋白,而移植骨髓间充质干细胞后能够使α-微管蛋白表达水平在海马区显著上调。且骨髓间充质干细胞移植也可导致血管生成素1和血管生成素2 mRNA表达显著上调。在心肌梗死模型中,骨髓间充质干细胞移植可减少心肌梗死面积,改善左室射血分数和血管密度及心肌灌注的增加[25]。Kinnaird等[26]实验证实骨髓间充质干细胞可分泌血管内皮生长因子、碱性成纤维细胞因子等,促进血管新生,抑制心肌纤维化,从而改善心功能。Tomita等[27]认为增生的血管并非是由骨髓间充质干细胞分化为内皮细胞所致,可能是宿主心肌中的血管再生造成的。这些研究均提示移植的骨髓间充质干细胞能够在局部微环境的作用下依赖微环境而发生分化或通过旁分泌一些细胞活性因子刺激血管新生或再生。 2.2 神经迁移蛋白Slit2 2.2.1 Slit2概述 Slit是一种由神经胶质细胞分泌的细胞外基质蛋白,在体内对神经元轴突的生长进行导向,在体外与感觉轴突侧支发芽和生长有关。近年来发现其不仅表达在神经系统[28],还可以表达在许多不同组织,例如肺、肾、胎盘、脾脏、心脏等[29]。Slit是一组相对分子质量为170 000-190 000的细胞外分泌蛋白,其结构域组成包括N端短的信号肽、4个连续的富含亮氨酸的重复序列、9个表皮生长因子样功能区,一个ALPS区域和一个C端富含半胱氨酸的区域[30-31],在哺乳动物体内发现3种同源的Slit2蛋白,即Slit1-Slit3,而目前研究较多的即是Slit2。Robo1是Slit2的跨膜受体,需要与之结合共同发挥作用。这一传导通路不但能够指引轴突导向[32],神经细胞迁移[33],白细胞趋化[34],而且还在血管生成及肿瘤等方面发挥作用[35]。 2.2.2 Slit2研究现状 抗炎作用:一项早期研究表明曾有报道Slit2的抗炎作用。服用外源性Slit2可快速抑制进行性抗肾小球基膜型肾炎中的白细胞渗透、新月体形成和肾功能不全。这个研究中,肾炎患者的内生肾小球性Slit2水平显著降低,Slit2可能起着对抗白细胞的作用[36]。最近,研究发现在缺血再灌注损伤时,肾小管间质中Slit2水平也下降,并且外源性Slit2会阻止中性粒细胞捕获、黏附和穿过缺血再灌注损伤的内皮细胞迁移。这种阻断作用在小鼠急性缺血性肾损伤中,与中性粒细胞低渗透、血管损失和肾功能不全有关[37]。类似地,在气管内给予脂多糖后,服用Slit2可减弱中性粒细胞渗透,肺血管漏和肺损伤[38-39]。这些临床前期的研究综合在一起提示了使用Slit2或其类似物可能会阻止与炎症相关的急性血管损伤。经研究证实Slit2/Robo是白细胞趋化的内源性抑制因子,在炎症反应中能抑制中性粒细胞、淋巴细胞及巨噬细胞的迁移,它主要通过抑制Rho家族GTP酶的极性和活化来发挥作用[40-41]。 Slit2与肿瘤关系:据报道Slit2是不同的肿瘤中一个潜在的肿瘤抑制基因,许多实体瘤如恶性黑色素瘤、乳腺癌、鳞状胃癌和肝癌等存在分泌性Slit2因子[42-45]。牛蕾等[46]采用免疫组化方法检测到Slit2在乳腺癌组织中的表达水平低于正常乳腺组织,提示该蛋白表达缺失可能和乳腺癌的发生有关。且实验还提示Slit2与雌激素受体、孕激素受体表达呈正相关,说明Slit2可能与乳腺癌发展及预后有关。Kim等[47]研究发现,乳腺癌组织中Slit2基因甲基化频率明显高于正常乳腺组织,提示肿瘤组织中Slit2基因发生甲基化从而使其表达降低。而与Slit2相结合的受体不同对肿瘤的发展也不同,例如Robo1可调节血管内皮细胞向肿瘤内迁移,促进肿瘤的新生血管形成从而促进肿瘤快速生长[48];而敲除斑马鱼体内的Robo4后会导致血管发育延迟[49]。Robo4被认为是肿瘤内皮细胞的标志,说明Slit2/Robo4抑制内皮细胞的迁移[50],即抑制肿瘤生长。 Slit2/Robo信号传导与血管再生:Slit2/Robo信号传导在调节血管生成过程中很复杂,既有促血管生成作用,又有抗血管生成作用[51]。早期报道显示Slit2对Robo1受体有促血管生成作用,它促进内皮细胞迁移和血管成形[52]。同样地,曾报道Robo1信号对血管内皮生长因子诱导其受体VEGFR2磷酸化的过程中(尤其在有Slit2参与时)起重要作用[48]。而Slit2/Robo4抗血管生成的作用,在Robo4为主的情况下,Slit2抑制血管内皮生长因子诱导的微血管内皮细胞迁移和血管成形[53]。有研究证明Slit2/Robo4活化作用干扰内皮细胞血管内皮生长因子信号,这可能是通过阻止MAP激酶和Arf小GTP酶活化[52,54]。一个最新报道也显示Robo4本身可能作为另一种内皮引导受体(UNC5B)的配体来抑制血管内皮生长因子信号传导[55]。最新研究理论显示Slit2的作用可能取决于细胞类型和/或环境[51]。例如发现促血管生成作用的研究与发现Slit2抗血管生成作用的研究之间的主要区别点是所用的内皮细胞类型不同。Slit2执行促血管生成作用的大多数研究用的是一种大血管内皮细胞(人脐静脉内皮细胞),而相反,证明Slit2的抗血管生成作用的研究用的则是微血管内皮细胞[53-54]。这种区别的重要性不能低估,因为微血管内皮细胞的Robo4/Robo1值比大血管内皮细胞的值高很多,致使它更倾向于抗血管生成而非促血管生成[56]。 2.3 Slit2与骨髓间充质干细胞 经研究发现Slit2可以促进静态造血干细胞进入细胞周期,而Robo4起着造血干细胞的骨髓归巢作用[57],在紧急造血时,可促进造血干细胞高表达。同时Robo4在骨髓内皮细胞选择性表达,而在骨髓间充质干细胞中可高表达[58],并在其侧群表型的调控中起关键作用[59]。Robo4对造血干细胞所起的调控作用与骨髓间充质干细胞促进血管再生有无关系目前还研究甚少。"
[1] Reinecke H, Murry CE.Cell grafting for cardiac repair.Methods Mol Biol. 2003;219:97-112. [2] Zhang X, Wei M, Zhu W,et al. Combined transplantation of endothelial progenitor cells and mesenchymal stem cells into a rat model of isoproterenol-induced myocardial injury.Arch Cardiovasc Dis. 2008;101(5):333-342. [3] Nusslein-Volhard C,Wiesehaus E,Kluding H.Mutations affeeting the Pattern of the larval cutiele in Drosophila melanogaster.I.Zygotic locion the second chronlosome.Rouxs Arch Dev Biol.1984;193:267-282. [4] Vargesson N, Luria V, Messina I,et al. Expression patterns of Slit and Robo family members during vertebrate limb development.Mech Dev. 2001;106(1-2):175-180. [5] Huminiecki L, Gorn M, Suchting S,et al. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis.Genomics. 2002;79(4):547-552. [6] Banas A, Teratani T, Yamamoto Y,et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes.Hepatology. 2007;46(1):219-228. [7] Lai RC, Arslan F, Tan SS,et al. Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles.J Mol Cell Cardiol. 2010;48(6):1215-1224. [8] Friedenstein AJ, Petrakova KV, Kurolesova AI,et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues.Transplantation. 1968; 6(2):230-247. [9] Caplan AI.Mesenchymal stem cells.J Orthop Res. 1991; 9(5):641-650. [10] Aurich H, Sgodda M, Kaltwasser P,et al. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 2009;58(4):570-581. [11] Matsuse D, Kitada M, Kohama M,et al. Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration.J Neuropathol Exp Neurol. 2010;69(9):973-985. [12] Curley GF, Ansari B, Hayes M,et al. Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury.Anesthesiology. 2013;118(4):924-932. [13] Reinshagen H, Auw-Haedrich C, Sorg RV,et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits.Acta Ophthalmol. 2011;89(8):741-748. [14] Xu YX, Chen L, Hou WK,et al. Mesenchymal stem cells treated with rat pancreatic extract secrete cytokines that improve the glycometabolism of diabetic rats.Transplant Proc. 2009;41(5):1878-1884. [15] Kurozumi K, Nakamura K, Tamiya T,et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model.Mol Ther. 2005;11(1):96-104. [16] Sadan O, Shemesh N, Cohen Y,et al. Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases.Isr Med Assoc J. 2009;11(4): 201-204. [17] Connolly DT.Vascular permeability factor: a unique regulator of blood vessel function.J Cell Biochem. 1991; 47(3):219-223. [18] Zhang ZG, Zhang L, Jiang Q,et al.VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.J Clin Invest. 2000;106(7):829-838. [19] 程峰,李立新,郝怀勇,等.骨髓间充质干细胞旁分泌作用与脑缺血后的细胞凋亡[J].中国组织工程研究与临床康复,2010,14(1): 1-5. [20] Fakler M, Loeder S, Vogler M,et al. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance.Blood. 2009;113(8):1710-1722. [21] Keung EZ, Nelson PJ, Conrad C.Concise review: genetically engineered stem cell therapy targeting angiogenesis and tumor stroma in gastrointestinal malignancy.Stem Cells. 2013; 31(2):227-235. [22] Khakoo AY, Pati S, Anderson SA,et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma.J Exp Med. 2006;203(5):1235-1247. [23] Chen J, Li Y, Katakowski M,et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat.J Neurosci Res. 2003;73(6):778-786. [24] Ma XL, Liu KD, Li FC,et al. Human mesenchymal stem cells increases expression of α-tubulin and angiopoietin 1 and 2 in focal cerebral ischemia and reperfusion.Curr Neurovasc Res. 2013;10(2):103-111. [25] Schuleri KH, Feigenbaum GS, Centola M,et al. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy.Eur Heart J. 2009;30(22): 2722-2732. [26] Kinnaird T, Stabile E, Burnett MS,et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms.Circulation. 2004;109(12): 1543-1549. [27] Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation.1999;100(19 Suppl):II247-256. [28] Jones CA, Nishiya N, London NR,et al. Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity.Nat Cell Biol. 2009;11(11):1325-1331. [29] Wang B, Xiao Y, Ding BB,et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity.Cancer Cell. 2003;4(1):19-29. [30] Brose K, Bland KS, Wang KH, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance.Cell. 1999;96(6):795-806. [31] Kidd T, Brose K, Mitchell KJ,et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors.Cell. 1998;92(2): 205-215. [32] Dickson BJ, Gilestro GF.Regulation of commissural axon pathfinding by slit and its Robo receptors.Annu Rev Cell Dev Biol. 2006;22:651-675. [33] Wu W, Wong K, Chen J,et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit.Nature. 1999;400(6742):331-336. [34] Prasad A, Qamri Z, Wu J,et al.Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells.J Leukoc Biol. 2007;82(3):465-476. [35] Wang B, Xiao Y, Ding BB,et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity.Cancer Cell. 2003;4(1): 19-29. [36] Kanellis J, Garcia GE, Li P,et al. Modulation of inflammation by slit protein in vivo in experimental crescentic glomerulonephritis.Am J Pathol. 2004;165(1):341-352. [37] Chaturvedi S, Yuen DA, Bajwa A,et al.Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury.J Am Soc Nephrol. 2013;24(8):1274-1287. [38] Ye BQ, Geng ZH, Ma L,et al.Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation.J Immunol. 2010;185(10):6294-6305. [39] London NR, Zhu W, Bozza FA,et al.Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza.Sci Transl Med. 2010;2(23):23ra19. [40] Ye BQ, Geng ZH, Ma L,et al. Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation.J Immunol. 2010;185(10):6294-6305. [41] Tole S, Mukovozov IM, Huang YW,et al.The axonal repellent, Slit2, inhibits directional migration of circulating neutrophils.J Leukoc Biol. 2009;86(6):1403-1415. [42] Alvarez C, Tapia T, Cornejo V,et al. Silencing of tumor suppressor genes RASSF1A, SLIT2, and WIF1 by promoter hypermethylation in hereditary breast cancer.Mol Carcinog. 2013;52(6):475-487. [43] Qiu H, Zhu J, Yu J,et al. SLIT2 is epigenetically silenced in ovarian cancers and suppresses growth when activated. Asian Pac J Cancer Prev. 2011;12(3):791-795. [44] Dunwell TL, Dickinson RE, Stankovic T,et al. Frequent epigenetic inactivation of the SLIT2 gene in chronic and acute lymphocytic leukemia.Epigenetics. 2009;4(4):265-269. [45] Legg JA, Herbert JM, Clissold P,et al. Slits and Roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis. 2008;11(1):13-21. [46] 牛蕾,米小轶.SLIT2与CXCR4在乳腺癌的表达及意义[J].中国医药科学,2013,3(7):143-145. [47] Kim GE, Lee KH, Choi YD,et al. Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients.Virchows Arch. 2011;459(4):383-390. [48] Wang B, Xiao Y, Ding BB,et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity.Cancer Cell. 2003;4(1): 19-29. [49] Kaur S, Samant GV, Pramanik K,et al.Silencing of directional migration in roundabout4 knockdown endothelial cells.BMC Cell Biol. 2008;9:61. [50] Seth P, Lin Y, Hanai J,et al. Magic roundabout, a tumor endothelial marker: expression and signaling.Biochem Biophys Res Commun. 2005;332(2):533-541. [51] Yuen DA, Robinson LA.Slit2-Robo signaling: a novel regulator of vascular injury.Curr Opin Nephrol Hypertens. 2013;22(4): 445-451. [52] Fish JE, Wythe JD, Xiao T,et al. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish.Development. 2011;138(7):1409-1419. [53] Jones CA, London NR, Chen H,et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability.Nat Med. 2008;14(4):448-453. [54] Jones CA, Nishiya N, London NR,et al. Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity.Nat Cell Biol. 2009;11(11):1325-1331. [55] Koch AW, Mathivet T, Larrivée B,et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B.Dev Cell. 2011;20(1):33-46. [56] Marlow R, Binnewies M, Sorensen LK,et al.Vascular Robo4 restricts proangiogenic VEGF signaling in breast.Proc Natl Acad Sci U S A. 2010;107(23):10520-10525. [57] Goto-Koshino Y, Fukuchi Y, Shibata F,et al. Robo4 plays a role in bone marrow homing and mobilization, but is not essential in the long-term repopulating capacity of hematopoietic stem cells.PLoS One. 2012;7(11):e50849. [58] Smith-Berdan S, Schepers K, Ly A,et al. Dynamic expression of the Robo ligand Slit2 in bone marrow cell populations.Cell Cycle. 2012;11(4):675-682. [59] Shibata F, Goto-Koshino Y, Morikawa Y,et al. Roundabout 4 is expressed on hematopoietic stem cells and potentially involved in the niche-mediated regulation of the side population phenotype.Stem Cells. 2009;27(1):183-190. [60] Katsha AM, Ohkouchi S, Xin H,et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model.Mol Ther. 2011;19(1): 196-203. [61] He F, Wu LX, Shu KX,et al. HGF protects cultured cortical neurons against hypoxia/reoxygenation induced cell injury via ERK1/2 and PI-3K/Akt pathways.Colloids Surf B Biointerfaces. 2008;61(2):290-297. [62] 许予明,宋波,秦洁,等.骨髓间充质干细胞对大鼠脑缺血再灌注损伤的保护机制[J].国外医学:脑血管疾病分册,2004,12(9): 657-660. [63] Gruber R, Kandler B, Holzmann P,et al. Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells.Tissue Eng. 2005;11(5-6):896-903. [64] Li Y, Chen J, Zhang CL,et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells.Glia. 2005;49(3):407-417. [65] 李国前,王杰华,杨小霞,等.骨髓间充质干细胞移植大鼠脑缺血区微血管密度和肝细胞生长因子的表达[J].中国组织工程研究与临床康复,2011,15(32):6007-6011. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[3] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[4] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[5] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[6] | Fan Quanbao, Luo Huina, Wang Bingyun, Chen Shengfeng, Cui Lianxu, Jiang Wenkang, Zhao Mingming, Wang Jingjing, Luo Dongzhang, Chen Zhisheng, Bai Yinshan, Liu Canying, Zhang Hui. Biological characteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1002-1007. |
[7] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[8] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[9] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[10] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[11] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[12] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[13] | Wang Shiqi, Zhang Jinsheng. Effects of Chinese medicine on proliferation, differentiation and aging of bone marrow mesenchymal stem cells regulating ischemia-hypoxia microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1129-1134. |
[14] | Kong Desheng, He Jingjing, Feng Baofeng, Guo Ruiyun, Asiamah Ernest Amponsah, Lü Fei, Zhang Shuhan, Zhang Xiaolin, Ma Jun, Cui Huixian. Efficacy of mesenchymal stem cells in the spinal cord injury of large animal models: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1142-1148. |
[15] | Chen Junyi, Wang Ning, Peng Chengfei, Zhu Lunjing, Duan Jiangtao, Wang Ye, Bei Chaoyong. Decalcified bone matrix and lentivirus-mediated silencing of P75 neurotrophin receptor transfected bone marrow mesenchymal stem cells to construct tissue-engineered bone [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 510-515. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||