Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (22): 4694-4701.doi: 10.12307/2025.454
Previous Articles Next Articles
Deng Yunyi1, 2, 3, Chen Shichao1, 2, 3, Luo Mingdong2, 3, Li Ruotong2, 3, Lan Xiaorong2, 3, Yu Ke1, 2, 3, Li Guangwen1, 2, 3
Received:
2024-03-20
Accepted:
2024-05-25
Online:
2025-08-08
Published:
2024-12-05
Contact:
Li Guangwen, Doctoral candidate, Attending physician, Department of Implantology, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China; Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou 646000, Sichuan Province, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, Sichuan Province, China
Yu Ke, MD, Associate professor, Department of Implantology, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China; Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou 646000, Sichuan Province, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, Sichuan Province, China
About author:
Deng Yunyi, Master, Department of Implantology, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China; Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou 646000, Sichuan Province, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, Sichuan Province, China
Supported by:
CLC Number:
Deng Yunyi, Chen Shichao, Luo Mingdong, Li Ruotong, Lan Xiaorong, Yu Ke, Li Guangwen. Gold nanoparticle @ mesoporous silica modified titanium implants promote osteogenic differentiation under high glucose conditions[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(22): 4694-4701.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] LONTCHI-YIMAGOU E, SOBNGWI E, MATSHA TE, et al. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435-444. [2] DE OLIVEIRA PGFP, BONFANTE EA, BERGAMO ETP, et al. Obesity/metabolic syndrome and diabetes mellitus on peri-implantitis. Trends Endocrinol Metab. 2020;31(8):596-610. [3] GRAVES DT, DING Z, YANG Y. The impact of diabetes on periodontal diseases. Periodontol 2000. 2020;82(1):214-224. [4] MONJE A, CATENA A, BORGNAKKE WS. Association between diabetes mellitus/hyperglycaemia and peri-implant diseases: Systematic review and meta-analysis. J Clin Periodontol. 2017;44(6):636-648. [5] HAN X, MA J, TIAN A, et al. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf B Biointerfaces. 2023;227:113339. [6] 刘鹏,樊博,邹磊,等.钛基植入物抗菌/促成骨双功能表面改性策略研究进展[J].中国修复重建外科杂志,2023,37(10):1300-1313. [7] ZHU L, LUO D, LIU Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci. 2020;12(1):6. [8] ZHAO R, CHEN S, YUAN B, et al. Healing of osteoporotic bone defects by micro-/nano-structured calcium phosphate bioceramics. Nanoscale. 2019;11(6):2721-2732. [9] HAGHWERDI F, KHOZAEI RAVARI M, TAGHIYAR L, et al. Application of bone and cartilage extracellular matrices in articular cartilage regeneration. Biomed Mater. 2021;16(4). doi: 10.1088/1748-605X/ac094b. [10] ZHANG T, GAO Y, CUI W, et al. Nanomaterials-based Cell Osteogenic Differentiation and Bone Regeneration. Curr Stem Cell Res Ther. 2021; 16(1):36-47. [11] GONG T, XIE J, LIAO J, et al. Nanomaterials and bone regeneration. Bone Res. 2015;3:15029. [12] FATTAHI R, MOHEBICHAMKHORAMI F, TAGHIPOUR N, et al. The effect of extracellular matrix remodeling on material-based strategies for bone regeneration: Review article. Tissue Cell. 2022;76:101748. [13] DENG C, XU C, ZHOU Q, et al. Advances of nanotechnology in osteochondral regeneration. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(6):e1576. [14] LEE KX, SHAMELI K, YEW YP, et al. Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. Int J Nanomedicine. 2020;15:275-300. [15] FAN J, CHENG Y, SUN M. Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. Chem Rec. 2020;20(12):1474-1504. [16] QIAO M, TANG W, XU Z, et al. Gold nanoparticles: promising biomaterials for osteogenic/adipogenic regulation in bone repair. J Mater Chem B. 2023;11(11):2307-2333. [17] LI J, LI JJ, ZHANG J, et al. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016;8(15):7992-8007. [18] KANKALA RK, HAN YH, NA J, et al. Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Adv Mater. 2020;32(23):e1907035. [19] KANKALA RK, HAN YH, XIA HY, et al. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J Nanobiotechnology. 2022;20(1):126. [20] SHI M, ZHOU Y, SHAO J, et al. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 2015;21:178-189. [21] WANG J, ZHANG Y, LIU L, et al. Combined chemo/photothermal therapy based on mesoporous silica-Au core-shell nanoparticles for hepatocellular carcinoma treatment. Drug Dev Ind Pharm. 2019;45(9): 1487-1495. [22] WANG H, CHEN F, HU A, et al. Harmine loaded Au@MSNs@PEG@Asp6 nano-composites for treatment of spinal metastasis from lung adenocarcinoma by targeting ANXA9 in vivo experiment. Transl Lung Cancer Res. 2023;12(5):1062-1077. [23] ZHOU L, LIU G, WANG Y, et al. AuNP and ssDNA capped mesoporous silica nanoparticles for laser controlled drug release. RSC Adv. 2019; 9(60):34958-34962. [24] ESKANDARI P, BIGDELI B, PORGHAM DARYASARI M, et al. Gold-capped mesoporous silica nanoparticles as an excellent enzyme-responsive nanocarrier for controlled doxorubicin delivery. J Drug Target. 2019; 27(10):1084-1093. [25] ZHANG Y, KONG N, ZHANG Y, et al. Size-dependent Effects of Gold Nanoparticles on Osteogenic Differentiation of Human Periodontal Ligament Progenitor Cells. Theranostics. 2017;7(5):1214-1224. [26] STICH T, ALAGBOSO F, KŘENEK T, et al. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng Transl Med. 2021;7(1):e10239. [27] LUO M, ZHAO Z, YI J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne). 2023;14:1150068. [28] LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;369:m997. [29] AJAMI E, BELL S, LIDDELL RS, et al. Early bone anchorage to micro- and nano-topographically complex implant surfaces in hyperglycemia. Acta Biomater. 2016;39:169-179. [30] CHOUIRFA H, BOULOUSSA H, MIGONNEY V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37-54. [31] MA L, LI G, LEI J, et al. Nanotopography Sequentially Mediates Human Mesenchymal Stem Cell-Derived Small Extracellular Vesicles for Enhancing Osteogenesis. ACS Nano. 2022;16(1):415-430. [32] LI H, HUANG J, WANG Y, et al. Nanoscale Modification of Titanium Implants Improves Behaviors of Bone Mesenchymal Stem Cells and Osteogenesis In Vivo. Oxid Med Cell Longev. 2022;2022:2235335. [33] HU P, GAO Q, ZHENG H, et al. The Role and Activation Mechanism of TAZ in Hierarchical Microgroove/Nanopore Topography-Mediated Regulation of Stem Cell Differentiation. Int J Nanomedicine. 2021;16: 1021-1036. [34] MA L, KE W, LIAO Z, et al. Small extracellular vesicles with nanomorphology memory promote osteogenesis. Bioact Mater. 2022; 17:425-438. [35] 张贤俊,赵锡江.钛螺钉表面含硅二氧化钛纳米管层的体内成骨性能[J].中国组织工程研究,2021,25(16):2461-2465. [36] WANG K, JIN H, SONG Q, et al. Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. Drug Deliv Transl Res. 2021;11(4):1456-1474. [37] 张利兴,田昂,李锡,等.TiO2纳米管/羟基磷灰石载万古霉素涂层的释药性及生物毒性[J].中国组织工程研究,2021,25(10):1500-1506. [38] CHOI SY, SONG MS, RYU PD, et al. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. Int J Nanomedicine. 2015;10:4383-4392. [39] RASOOL N, NEGI D, SINGH Y. Thiol-Functionalized, Antioxidant, and Osteogenic Mesoporous Silica Nanoparticles for Osteoporosis. ACS Biomater Sci Eng. 2023;9(6):3535-3545. [40] REN B, WAN Y, LIU C, et al. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. Mater Sci Eng C Mater Biol Appl. 2021; 118:111505. [41] SUN X, LIN H, ZHANG C, et al. Improved Osseointegration of Selective Laser Melting Titanium Implants with Unique Dual Micro/Nano-Scale Surface Topography. Materials (Basel). 2022;15(21):7811. [42] ZHOU J, XIONG S, LIU M, et al. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol. 2023;11:1127162. [43] SAKTHI DEVI R, GIRIGOSWAMI A, SIDDHARTH M, et al. Applications of Gold and Silver Nanoparticles in Theranostics. Appl Biochem Biotechnol. 2022;194(9):4187-4219. |
[1] | Aikepaer · Aierken, Chen Xiaotao, Wufanbieke · Baheti. Osteogenesis-induced exosomes derived from human periodontal ligament stem cells promote osteogenic differentiation of human periodontal ligament stem cells in an inflammatory microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1388-1394. |
[2] | Sun Yuting, Wu Jiayuan, Zhang Jian. Physical factors and action mechanisms affecting osteogenic/odontogenic differentiation of dental pulp stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1531-1540. |
[3] | Ge Xiao, Zhao Zhuangzhuang, Guo Shuyu, Xu Rongyao. HOXA10 gene-modified bone marrow mesenchymal stem cells promote bone regeneration [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7701-7708. |
[4] | Liu Chengyuan, Guo Qianping. Differential effects of kartogenin on chondrogenic and osteogenic differentiation of rat and rabbit bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7490-7498. |
[5] | Zhang Fei, Zuo Jun. Inhibition of hypertrophic scar in rats by beta-sitosterol-laden mesoporous silica nanoparticles [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7301-7309. |
[6] | Tang Haoxu, Liang Yingjie, Li Ce, Ding Penglin, Qian Minlong, Yuan Lingli. Deferoxamine alleviates the inhibitory effect of glucocorticoids on osteogenic differentiation [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(32): 6821-6827. |
[7] | Liu Xun, Ouyang Hougan, Pan Rongbin, Wang Zi, Yang Fen, Tian Jiaxuan . Optimal parameters for physical interventions in bone marrow mesenchymal stem cell differentiation [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6727-6732. |
[8] | Pan Yu, Zhao Renfeng, Li Xingping, Zhang Chengdong, Shi Feng, Pu Chao, Luo Xuwei, Xiao Dongqin. Iron overload induces ferroptosis in osteoblast precursor cells and inhibits osteogenic differentiation [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6381-6390. |
[9] | Chen Pinrui, Xue Yiyuan, Pei Xibo. Fe3O4@ZIF-8 nanoparticles affect osteogenic differentiation of bone marrow mesenchymal stem cells under magnetic stimulation [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(23): 4841-4850. |
[10] | Han Nianrong, Huang Yifei, Akram · Osman, Liu Yanlu, Hu Wei . Programmed death receptor 1 inhibits osteogenic differentiation of rat bone marrow mesenchymal stem cells in a high glucose environment [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(19): 3961-3967. |
[11] | Ye Zhimao, Hui Jiuying, Zhong Xiaoxia, Mai Yuying, Li Hao. Mogroside V promotes osteogenic differentiation of bone marrow mesenchymal stem cells by modulating M1 polarization of macrophages under high glucose condition [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(19): 3968-3975. |
[12] | Gao Feng, Wang Jiliang, Wang Hongbo, Yang Yongsheng, Liu Yuan, Fu Su. Passage-associated senescence decreases osteogenic activity of MC3T3-E1 cells via primary cilia [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(18): 3741-3746. |
[13] | Wang Wenchi, Xia Tian, Wu Ruiqi, Liang Haohan, Ni Zhenyang, Zhang Zhenhao, Li Zhenxing, Chen Guanghui, Su Han. Molecular mechanism of active ingredients of Ligustri Lucidi Fructus against osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(18): 3856-3867. |
[14] | Zhang Wanli, Bai Tao, Han Nianrong, Akram·Osman, Liu Yanlu, Huang Yifei, Hu Wei. Mechanism by which programmed cell death protein 1 influences osteoblast differentiation under high-glucose conditions [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(17): 3521-3528. |
[15] | Qin Jingjie, Guo Zige, Li Rui, Ma Shiqing, Lu Ruijie, Li Mengjun. Modification with bone forming peptide 1 and polydopamine coating to improve bioactivity of polyetheretherketone surface [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(16): 3318-3325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||