[1] SITIA S, TOMASONI L, ATZENI F, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 2010;9(12):830-834.
[2] XU S, ILYAS I, LITTLE PJ, et al. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev. 2021;73(3):924-967.
[3] SUN HJ, WU ZY, NIE XW, et al. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front Pharmacol. 2020;10:1568.
[4] FÖRSTERMANN U, SESSA WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-837,837a-837d.
[5] LUSIS AJ. Atherosclerosis. Nature. 2000;407(6801):233-241.
[6] PAN Y, CAI W, HUANG J, et al. Pyroptosis in development, inflammation and disease. Front Immunol. 2022;13:991044.
[7] 胡颖超,杨硕.细胞焦亡的研究进展[J].南京医科大学学报(自然科学版), 2021,41(8):1245-1251.
[8] 董娜,邵峰.细胞焦亡的机制和功能[J].中国科学:生命科学,2019,49(12): 1606-1634.
[9] 曹朝晖,吴颛,胡小波.细胞焦亡参与动脉粥样硬化形成的分子机制新进展[J].中国动脉硬化杂志,2021,29(7):560-565.
[10] ZENG X, LIU D, HUO X, et al. Pyroptosis in NLRP3 inflammasome-related atherosclerosis. Cell Stress. 2022;6(10):79-88.
[11] SHI J, GAO W, SHAO F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42(4):245-254.
[12] YANG Z, SHI J, CHEN L, et al. Role of Pyroptosis and Ferroptosis in the Progression of Atherosclerotic Plaques. Front Cell Dev Biol. 2022;10:811196.
[13] ZHENG D, LIU J, PIAO H, et al. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022;13: 1039241.
[14] ZENG W, WU D, SUN Y, et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci Rep. 2021;11(1):19305.
[15] COWIE MR, FISHER M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761-772.
[16] RAHADIAN A, FUKUDA D, SALIM HM, et al. Canagliflozin Prevents Diabetes-Induced Vascular Dysfunction in ApoE-Deficient Mice. J Atheroscler Thromb. 2020;27(11):1141-1151.
[17] XUE M, LI T, WANG Y, et al. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice. Clinical Science. 2019;133(15):1705-1720.
[18] LIU P, ZHANG Z, WANG J, et al. Empagliflozin protects diabetic pancreatic tissue from damage by inhibiting the activation of the NLRP3/caspase-1/GSDMD pathway in pancreatic β cells: in vitro and in vivo studies. Bioengineered. 2021; 12(2):9356-9366.
[19] EL-ROUS MA, SABER S, RAAFAT EM, et al. Dapagliflozin, an SGLT2 inhibitor, ameliorates acetic acid-induced colitis in rats by targeting NFκB/AMPK/NLRP3 axis. Inflammopharmacology. 2021;29(4):1169-1185.
[20] 方岩,张唯薇,蒋梦婷,等.达格列净改善糖尿病动脉粥样硬化模型小鼠斑块的作用机制[J].解放军医学院学报,2022,43(2):186-192+198.
[21] 毕一鸣,曹丰.内皮细胞功能异常与动脉粥样硬化的研究进展[J].心血管病学进展,2022,43(2):150-153+177.
[22] ZHANG P, LUO J, WU T, et al. MiR-32-5p/AIDA Mediates OxLDL-Induced Endothelial Injury and Inflammation. Int Heart J. 2022;63(5):928-938.
[23] LUO L, LIANG H, LIU L. Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway. Pharm Biol. 2022;60(1):56-64.
[24] UTHMAN L, HOMAYR A, JUNI RP, et al. Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells. Cell Physiol Biochem. 2019;53(5):865-886.
[25] COLL RC, SCHRODER K, PELEGRÍN P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol Sci. 2022;43(8):653-668.
[26] ZANG YH, CHEN D, ZHOU B, et al. FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NFκB-mediated NLRP3 upregulation. Vascul Pharmacol. 2019;121:106579.
[27] LI Y, NIU X, XU H, et al. VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis. Exp Cell Res. 2020;389(1):111847.
[28] CHEN YC, JANDELEIT-DAHM K, PETER K. Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes-Induced Atherosclerotic Plaque Instability. J Am Heart Assoc. 2022;11(1):e022761.
[29] BEHNAMMANESH G, DURANTE GL, KHANNA YP, et al. Canagliflozin inhibits vascular smooth muscle cell proliferation and migration: Role of heme oxygenase-1. Redox Biol. 2020;32:101527.
[30] SUKHANOV S, HIGASHI Y, YOSHIDA T, et al. The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion. Cell Signal. 2021;77:109825.
[31] LENG W, OUYANG X, LEI X, et al. The SGLT-2 Inhibitor Dapagliflozin Has a Therapeutic Effect on Atherosclerosis in Diabetic ApoE-/- Mice. Mediators Inflamm. 2016;2016:6305735.
[32] 林李嘉慧.达格列净通过抑制SGLT-2下调高糖高脂诱导的自噬改善内皮细胞功能紊乱[D].衡阳:南华大学,2021.
[33] JAIKUMKAO K, PROMSAN S, THONGNAK L, et al. Dapagliflozin ameliorates pancreatic injury and activates kidney autophagy by modulating the AMPK/mTOR signaling pathway in obese rats. J Cell Physiol. 2021;236(9):6424-6440.
[34] TERASAKI M, HIROMURA M, MORI Y, et al. Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. PLoS One. 2015;10(11):e0143396.
[35] MA L, HAN Z, YIN H, et al. Characterization of Cathepsin B in Mediating Silica Nanoparticle-Induced Macrophage Pyroptosis via an NLRP3-Dependent Manner. J Inflamm Res. 2022;15:4537-4545.
|