Chinese Journal of Tissue Engineering Research ›› 2026, Vol. 30 ›› Issue (23): 6142-6149.doi: 10.12307/2026.353
Previous Articles Next Articles
Wang Yan1, Lyu Hao1, Hu Zhimu1, Zhou Yao1, Liu Qiang1, Yang Yuxiang1, Yi Hairu1, Wang Jiuxiang2, Jiang Ting2
Received:2025-05-06
Accepted:2025-08-22
Online:2026-08-18
Published:2026-01-06
Contact:
Wang Jiuxiang, MD, Associate researcher, Master’s supervisor, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
About author:Wang Yan, MS candidate, the First Clinical Medical College of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
Lyu Hao, MD candidate, the First Clinical Medical College of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
Wang Yan and Lyu Hao contributed equally to this work.
Corresponding author: Jiang Ting, MD, Chief physician, Doctoral supervisor, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
Supported by:CLC Number:
Wang Yan, Lyu Hao, Hu Zhimu, Zhou Yao, Liu Qiang, Yang Yuxiang, Yi Hairu, Wang Jiuxiang, Jiang Ting. Intervention with Compound Kidney-Invigorating Granules in a mouse model of osteoporosis: role of the TRIB3/beta-catenin axis[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(23): 6142-6149.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 实验动物数量分析 70只小鼠在实验过程中均无脱失,每组10只全部进入结果分析。 2.2 小鼠一般表现 空白对照组未进行手术,小鼠表现活跃、反应敏捷,饮食良好;造模后1周,对比空白对照组,其余组别小鼠反应迟钝,精神萎靡,食量减少;造模后2周,切口愈合,反应灵敏,表现活跃,生理状态基本恢复。 2.3 小鼠骨形态变化 Micro-CT三维重建图像显示空白对照组和假手术组小鼠无明显差异,骨小梁形态较粗,骨皮质较厚;与假手术组比较,模型组小鼠骨小梁断裂明显,骨小梁数目明显减少;与模型组相比,阳性对照组小鼠骨皮质厚度和骨小梁数目有较大的改善;与模型组相比,低、中、高剂量复方补肾活血颗粒组骨小梁数目和骨小梁厚度随着剂量不同,出现不同程度的改变,见图1、表1。"
2.4 股骨苏木精-伊红染色比较 苏木精-伊红染色后镜下可见空白对照组和假手术组无明显差异,骨小梁形态较粗,排列规整;与假手术组比较,模型组骨小梁排列稀疏,骨小梁断裂明显,空骨陷窝明显增多;与模型组相比,阳性对照组和复方补肾活血颗粒低、中、高剂量组骨小梁形态排列规则,空骨陷窝数量均有不同程度的改善,见图2,3。 2.5 股骨Masson染色比较 Masson染色观察空白对照组和假手术组无明显差异,骨小梁完好,连接有序,可见浅蓝色骨骺生长板;与假手术组比较,模型组骨小梁稀疏断裂,骨小梁间隙增大呈续断连接,骨骺生长板较薄;与模型组相比,阳性对照组和复方补肾活血颗粒低、中、高剂量组骨小梁间隙变小且连接紧密,骨骺生长板增厚均有不同程度的改善,其中复方补肾活血颗粒高剂量组和阳性对照组改善较为明显,见图4。 2.6 骨组织蛋白表达水平比较 Western Blot检测结果显示,与空白对照组比较,假手术组小鼠骨组织中的TRIB3、碱性磷酸酶、骨桥蛋白及β-catenin表达量无明显差异(P > 0.05);与假手术组相比,模型组小鼠骨组织中TRIB3、碱性磷酸酶、骨桥蛋白及β-catenin蛋白表达均明显下降(P < 0.05);与模型组比较,复方补肾活血颗粒各剂量组小鼠骨组织中的TRIB3、骨桥蛋白及β-catenin蛋白表达均明显升高(P < 0.05),复方补肾活血颗粒中、高剂量组小鼠骨组织碱性磷酸酶蛋白表达均明显升高(P < 0.05),复方补肾活血颗粒低剂量组小鼠骨组织碱性磷酸酶蛋白表达差异无显著性意义(P > 0.05),见图5。"
| [1] GOPINATH V. Osteoporosis. Med Clin North Am. 2023;107(2):213-225. [2] ALI D, TENCEROVA M, FIGEAC F, et al. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne). 2022;13:981487. [3] BARRON RL, OSTER G, GRAUER A, et al. Determinants of imminent fracture risk in postmenopausal women with osteoporosis. Osteoporos Int. 2020;31(11):2103-2111. [4] CHEN P, LI Z, HU Y. Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health. 2016;16(1):1039. [5] TRAJANOSKA K, RIVADENEIRA F.The genetic architecture of osteoporosis and fracture risk. Bone. 2019;126:2-10. [6] DENG T, ZHANG W, ZHANG Y, et al. Thyroid-stimulating hormone decreases the risk of osteoporosis by regulating osteoblast proliferation and differentiation. BMC Endocr Disord. 2021;21(1):49. [7] WANG S, DENG Z, MA Y, et al. The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci.2020;16(14):2675-2691. [8] HU K, SHANG Z, YANG X, et al. Macrophage Polarization and the Regulation of Bone Immunity in Bone Homeostasis. J Inflamm Res. 2023;16:3563-3580. [9] CHEN X, WANG Z, DUAN N, et al.Osteoblast-osteoclast interactions.Connect Tissue Res. 2018;59(2):99-107. [10] 黎征鹏, 章晓云, 曾浩, 等. 基于“脏腑-骨痿”理论探讨绝经后骨质疏松症的发病机制[J].世界中医药,2024,19(19):1-8. [11] 胡得翼, 鄢卫平, 李景周, 等.基于“肾虚血瘀”理论探讨骨质疏松症的病因病机及治疗现状[J]. 风湿病与关节炎,2023;12(11):44-47. [12] SONG S, GUO Y, YANG Y, et al. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther. 2022;237:108168. [13] NUNKOO S, KRISSHEEVEN M, CHITRAVANSHI A, et al. Clinical Efficacy and Safety of Teriparatide Versus Alendronate in Postmenopausal Osteoporosis: A Systematic Review of Randomized Controlled Trials. Cureus. 2024;16(11):e73068. [14] IBRAHIM N, FOO LK, CHUA SL. Predicting the Severity of Adverse Events on Osteoporosis Drugs Using Attribute Weighted Logistic Regression. Int J Environ Res Public Health. 2023;20(4):3289. [15] ROSSINI M, ADAMI G, ADAMI S, et al. Safety issues and adverse reactions with osteoporosis management. Expert Opin Drug Saf. 2016;15(3):321-332. [16] 赵进东, 舒仪琼, 刘剑, 等. 复方补肾活血颗粒对肾虚血瘀证绝经后非老年骨质疏松症患者视觉模拟评分和骨密度影响的临床观察[J]. 中国骨质疏松杂志,2018,24(1):98-101. [17] 王雨. 基于“肾虚血瘀”理论探究复方补肾活血颗粒治疗老年性骨质疏松症患者的临床研究[D]. 合肥:安徽中医药大学,2022. [18] 朱余俊, 吕浩, 江渟. 复方补肾活血颗粒对人骨髓间充质干细胞增殖及Wnt/PI3K-AKT信号通路相关蛋白表达的影响[J].中国中医药信息杂志,2022,29(3):79-84. [19] 乔明珠, 吕浩, 胡芷苜,等. 基于Wnt/β-catenin信号通路的复方补肾活血颗粒对骨髓间充质干细胞成骨、成脂分化的影响[J]. 中国中医药信息杂志,2023,30(11):107-113. [20] 胡芷苜, 王久香, 江渟. 复方补肾活血颗粒含药血清经β-catenin/TRIB3调控人骨髓间充质干细胞成骨成脂分化[J]. 安徽中医药大学学报,2024,43(5):78-85. [21] 乌云必力格, 青格勒, 斯琴, 等. 基于Wnt/β-cat信号通路探讨蒙药润骨灵治疗绝经后骨质疏松症小鼠的疗效及作用机制[J]. 中国民族医药杂志,2024,30(9):45-50. [22] 韩丽侠, 杨晨晨, 高志泽, 等. NLRP3对小鼠骨质疏松及PI3K/Akt/mTOR信号通路的影响[J]. 中国老年学杂志,2024,44(17):4317-4322. [23] 浦冬青, 冯丹丹, 张梦棣, 等. 黄芪补肾活血汤对芳香化酶抑制剂诱导骨质疏松模型小鼠破骨细胞活性的影响[J]. 中国组织工程研究,2025,29(14):2861-2867. [24] HUANG F, WANG Y, LIU J, et al. Asperuloside alleviates osteoporosis by promoting autophagy and regulating Nrf2 activation. J Orthop Surg Res. 2024;19(1):855. [25] 牛园园, 张天驰, 李沐哲, 等. 温肾通络止痛方通过AMPK/mTOR信号通路调控自噬对老年性骨质疏松模型小鼠的干预作用[J].中国中西医结合杂志,2024,44(1):84-90. [26] 韦雨柔,田佳庆,肖方骏,等.活血通络胶囊对激素性股骨头坏死大鼠肠道菌群影响的研究[J].中国全科医学,2023,26(29):3674-3682. [27] HSU SH, CHEN LR, CHEN KH. Primary Osteoporosis Induced by Androgen and Estrogen Deficiency: The Molecular and Cellular Perspective on Pathophysiological Mechanisms and Treatments. Int J Mol Sci. 2024;25(22):12139. [28] LI X, LI N, PEI H, et al. Zhuanggu Shubi ointment mediated the characteristic bacteria-intestinal mucosal barrier-bone metabolism axis to intervene in postmenopausal osteoporosis. Front Cell Infect Microbiol. 2024;14:1500111. [29] HU X, LEI X, LIN W, et al. Quercetin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by modulating the miR-214-3p/Wnt3a/beta-catenin signaling pathway. Exp Cell Res. 2024; 444(2):114386. [30] WANG S, LI Y, ZHANG N, et al. Screening of ESR2-targeted anti-postmenopausal osteoporosis chemistry from Rehmanniae Radix Preparata based on affinity ultrafiltration with UPLC-QE-Orbitrap-MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2024;1251:124419. [31] CHEN J, NG S, XU P, et al. Herbal formula xuling-jiangu improves bone metabolic balance in rats with ovariectomy-induced osteoporosis via the gut-bone axis. Front Pharmacol. 2024;15:1505231. [32] ZHANG Y, HAN B, WEI Y, et al. Icariin Promotes Fracture Healing in Ovariectomized Rats. Med Sci Monit. 2020;26:e924554. [33] 卜寒梅, 王世坤, 李远栋, 等. 补肾中药基于OPG/RANKL/RANK信号通路对原发性骨质疏松症作用机制的研究进展[J]. 中草药, 2022,53(10):3209-3217. [34] HAN SY, LEE JR, KWON YK, et al. Ostreae Testa prevent ovariectomy-induced bone loss in mice by osteoblast activations. J Ethnopharmacol. 2007;114(3):400-405. [35] FENG X, JIANG S, ZHANG F, et al. Shell water-soluble matrix protein from oyster shells promoted proliferation, differentiation and mineralization of osteoblasts in vitro and vivo. Int J Biol Macromol. 2022;201:288-297. [36] WANG J, HUANG Y, GUO L, et al. Molecular mechanism of Achyranthis bidentatae radix and Morindae officinalis radix in osteoporosis therapy:An investigation based on network pharmacology, molecular docking, and molecular dynamics simulations. Biochem Biophys Rep. 2023;36:101586. [37] LIU J, LIU J, LIU L,et al.Reprogrammed intestinal functions in Astragalus polysaccharide-alleviated osteoporosis: combined analysis of transcriptomics and DNA methylomics demonstrates the significance of the gut-bone axis in treating osteoporosis. Food Funct. 2021;12(10):4458-4470. [38] GUO W, YANG XG, SHI YL, et al.The effects and mechanism of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1. J Orthop Surg Res. 2022;17(1):90. [39] LUO JS, ZHAO X, YANG Y. Effects of emodin on inflammatory bowel disease-related osteoporosis. Biosci Rep. 2020;40(1):BSR20192317. [40] LV H, WANG J, ZHU Y, et al. Study on the Mechanism of Compound Kidney-Invigorating Granule for Osteoporosis based on Network Pharmacology and Experimental Verification. Evid Based Complement Alternat Med. 2022;2022:6453501. [41] WANG X, QU Z, ZHAO S, et al. Wnt/beta-catenin signaling pathway: proteins’ roles in osteoporosis and cancer diseases and the regulatory effects of natural compounds on osteoporosis. Mol Med. 2024;30(1):193. [42] DU K, HERZIG S, KULKARNI RN, et al. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science. 2003;300(5625):1574-1577. [43] ARIF A, ALAMERI AA, TARIQ UB, et al. The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol. 2023;114:109581. [44] BAI XS, LV LW, ZHOU YS.Tribbles pseudokinase 3 inhibits the adipogenic differentiation of human adipose-derived mesenchymal stem cells. Beijing Da Xue Xue Bao Yi Xue Ban.2020;52(1):1-9. [45] FAN J, LEE CS, KIM S, et al. Trb3 controls mesenchymal stem cell lineage fate and enhances bone regeneration by scaffold-mediated local gene delivery. Biomaterials. 2021;264:120445. [46] 王子文, 王久香, 吕浩, 等. 复方补肾活血颗粒含药血清通过Trb3调控hBMSCs成骨成脂分化[J]. 中国骨质疏松杂志,2023,29(4): 544-549+561. [47] ZHU Z, HU X, LIU K, et al. E3 ubiquitin ligase Siah1 aggravates NAFLD through Scp2 ubiquitination. Int Immunopharmacol. 2023;124(Pt A): 110897. [48] KNAUER SK, MAHENDRARAJAH N, ROOS WP, et al. The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine Growth Factor Rev. 2015;26(4):405-413. [49] YUAN H, WU H, CHENG J, et al. SIAH1 ubiquitination-modified HMGCR inhibits lung cancer progression and promotes drug sensitivity through cholesterol synthesis. Cancer Cell Int. 2023;23(1):71. [50] ZHOU Y, LI L, LIU Q, et al. E3 ubiquitin ligase SIAH1 mediates ubiquitination and degradation of TRB3. Cell Signal. 2008;20(5):942-948. [51] TAN L, YAMMANI RR. Co-Immunoprecipitation-Blotting: Analysis of Protein-Protein Interactions. Methods Mol Biol. 2022;2413:145-154. |
| [1] | Zhang Haiwen, Zhang Xian, Xu Taichuan, Li Chao. Bibliometric and visual analysis of the research status and trends of senescence in osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1580-1591. |
| [2] | Bao Zhuoma, Hou Ziming, Jiang Lu, Li Weiyi, Zhang Zongxing, Liu Daozhong, Yuan Lin. Effect and mechanism by which Pterocarya hupehensis skan total flavonoids regulates the proliferation, migration and apoptosis of fibroblast-like synoviocytes [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 816-823. |
| [3] | Xie Ziying, Li Songbo, Li Jianwen, Yin Yuchao, Zheng Baichuan, Hu Chengshang. Animal experimental study on the treatment of lumbar intervertebral disc degeneration with Chinese herbal compound: species selection, modeling method and drug administration [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(23): 5934-5942. |
| [4] | Du Xingbin, Jiang Fugao, Kong Jianda. Traditional Chinese sports in the treatment of osteoporosis: potential biological mechanisms and clinical application progress [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(23): 5943-5953. |
| [5] | Wu Lingjie, Zheng Kaiyuan, Wang Guangrong, Yin Chong . Strategies for the application of miRNA-targeted therapy in the treatment of osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(22): 5792-5803. |
| [6] | Wang Siwei, Yao Xiaosheng, Qi Xiaonan, Wang Yu, Cui Haijian, Zhao Jiaxuan. Matrix metalloproteinase 9 mediates mitophagy to regulate osteogenesis and myogenesis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(18): 4557-4567. |
| [7] | Fu Jingyue, Zhou Qinfeng, Li Muzhe, Ma Yong, Pan Yalan, Sun Jie, Huang Xiangyang, Guo Yang. Preparation and evaluation of an animal model of osteoporosis and osteoarthritis comorbidity in rats [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(17): 4299-4308. |
| [8] | Gao Feng, Wang Jiliang, Wang Hongbo, Yang Yongsheng, Liu Yuan, Fu Su. Extracellular matrix stiffness affects the proliferation activity of bone marrow stromal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(13): 3226-3232. |
| [9] | Yin Lu, Jiang Chuanfeng, Chen Junjie, Yi Ming, Wang Zihe, Shi Houyin, Wang Guoyou, Shen Huarui. Effect of Complanatoside A on the apoptosis of articular chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1541-1547. |
| [10] | Zheng Lin, Jin Wenjun, Luo Shanshan, Huang Rui, Wang Jie, Cheng Yuting, An Zheqing, Xiong Yue, Gong Zipeng, Liao Jian. Eucommia ulmoides promotes alveolar bone formation in ovariectomized rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1159-1167. |
| [11] | Lang Mecuo, Zhang Yilin, Wang Li. MiR-338-3p affects proliferation and apoptosis of alveolar bone osteoblasts by targeting receptor activator of nuclear factor-kappaB ligand [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 899-907. |
| [12] | Xiang Pan, Che Yanjun, Luo Zongping. Compressive stress induces degeneration of cartilaginous endplate cells through the SOST/Wnt/beta-catenin pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 951-957. |
| [13] | Liu Ruojing, Zhao Xue, Zhu Yizhen, Fu Lingling, Zhu Junde. Ginsenoside Rb1 alleviates cerebral ischemic injury in mice by regulating microglial polarization [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(29): 6219-6227. |
| [14] | Hu Enxi, He Wenying, Tao Xiang, Du Peijing, Wang Libin. Regulation of THZ1, an inhibitor of cyclin-dependent kinase 7, on stemness of glioma stem cells and its mechanism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(25): 5374-5381. |
| [15] | Yu Peng, Meng Dongfang, Li Huiying, Liu Hongfei, He Zike. Pinoresinol diglucoside activates the Wnt/beta-catenin signaling pathway to protect osteoblasts [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(2): 339-346. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||