Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (2): 339-346.doi: 10.12307/2025.237
Previous Articles Next Articles
Yu Peng1, Meng Dongfang2, Li Huiying2, Liu Hongfei3, He Zike4
Received:
2023-12-01
Accepted:
2024-03-07
Online:
2025-01-18
Published:
2024-05-25
Contact:
Li Huiying, MD, Professor, Chief physician, Doctoral supervisor, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
About author:
Yu Peng, MD candidate, College of Orthopedics and Traumatology, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
Meng Dongfang, MD, Associate chief physician, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
Yu Peng and Meng Dongfang contributed equally to this work.
Supported by:
CLC Number:
Yu Peng, Meng Dongfang, Li Huiying, Liu Hongfei, He Zike. Pinoresinol diglucoside activates the Wnt/beta-catenin signaling pathway to protect osteoblasts [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(2): 339-346.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.7 松脂醇二葡萄糖苷激活Wnt/β-catenin信号通路,抑制成骨细胞凋亡 2.7.1 Real-Time qPCR检测相关 mRNA表达水平 与对照组比较,除PDG组中骨钙素和Ⅰ型胶原蛋白mRNA表达水平无明显差异(P > 0.05),地塞米松组、抑制剂组和PDG+抑制剂组中的Wnt3a、β-catenin、c-myc、骨钙素和Ⅰ型胶原蛋白 mRNA表达均显著降低(P < 0.05);与地塞米松组比较,抑制剂组中Wnt3a mRNA表达水平无明显差异(P > 0.05),β-catenin、c-myc、骨钙素和Ⅰ型胶原蛋白 mRNA表达水平均显著降低(P < 0.05),PDG组和PDG+抑制剂组中的Wnt3a、β-catenin、c-myc、骨钙素和Ⅰ型胶原蛋白 mRNA表达水平均显著升高(P < 0.05);与抑制剂组比较,PDG组和PDG+抑制剂组中的Wnt3a、β-catenin、c-myc、骨钙素和Ⅰ型胶原蛋白 mRNA表达水平均显著升高(P < 0.05);与PDG组比较,PDG+抑制剂组中各指标的mRNA表达水平均无明显变化(P > 0.05),见表8。 2.7.2 Western Blot检测相关蛋白的表达水平 与对照组比较,除PDG组中骨钙素表达水平无明显差异外(P > 0.05),地塞米松组、抑制剂组和PDG+抑制剂组中的Wnt3a、β-catenin、c-myc、骨钙素和Ⅰ型胶原蛋白表达水平均显著降低(P < 0.05);与地塞米松组比较,抑制剂组中Wnt3a、骨钙素和Ⅰ型胶原蛋白表达水平无明显差异(P > 0.05),β-catenin、c-myc表达水平均显著降低(P < 0.05),PDG组和PDG+抑制剂组中Wnt3a、β-catenin、c-myc、骨钙素和Ⅰ型胶原蛋白的蛋白表达水平均升高(P < 0.05);"
[1] CHANG C, GREENSPAN A, GERSHWIN ME. The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis. J Autoimmun. 2020;110:102460. [2] MONT MA, SALEM HS, PIUZZI NS, et al. Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today?: A 5-Year Update. J Bone Joint Surg Am. 2020;102(12):1084-1099. [3] POWELL C, CHANG C, GERSHWIN ME. Current concepts on the pathogenesis and natural history of steroid-induced osteonecrosis. Clin Rev Allergy Immunol. 2011;41(1):102-113. [4] KIM JM, LIN C, STAVRE Z, et al. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells. 2020;9(9):2073. [5] SUN F, ZHOU JL, LIU ZL, et al. Dexamethasone induces ferroptosis via P53/SLC7A11/GPX4 pathway in glucocorticoid-induced osteonecrosis of the femoral head. Biochem Biophys Res Commun. 2022;602: 149-155. [6] 吴思敏,孙薇,高玉海,等.松脂醇二葡萄糖苷促进体外培养成骨细胞骨形成的作用研究[J].解放军医药杂志,2021,33(5):9-12. [7] 黄星翔,钟超,叶华,等.基于Nrf2通路探讨松脂醇二葡萄糖苷改善小鼠骨质疏松的机制研究[J].中国临床解剖学杂志,2023,41(2): 162-171. [8] 尚征亚,曹林忠,杨浩东,等.中医药调控Wnt/β-catenin信号通路治疗激素性股骨头坏死的研究进展[J].中国实验方剂学杂志, 2023,29(20):205-213. [9] XU H, FANG L, ZENG Q, et al. Glycyrrhizic acid alters the hyperoxidative stress-induced differentiation commitment of MSCs by activating the Wnt/β-catenin pathway to prevent SONFH. Food Funct. 2023;14(2): 946-960. [10] XIE D, ZHENG GZ, XIE P, et al. Antitumor activity of resveratrol against human osteosarcoma cells: a key role of Cx43 and Wnt/β-catenin signaling pathway. Oncotarget. 2017;8(67):111419-111432. [11] 闫玉珠,于燕,刘俊叶,等.酒精性和激素性股骨头坏死的外周血脂质组学分析[J].中南大学学报(医学版),2022,47(7):872-880. [12] 孔智恒, 李树山, 王海涛,等.激素性股骨头坏死来源的细胞外囊泡对骨髓间充质干细胞成骨分化的影响[J].中华实验外科杂志, 2022,39(8):1545-1548. [13] 田心保, 林瑞珠, 朱宁.激素性股骨头缺血性坏死的发病机制[J].中国矫形外科杂志,2022,30(10):915-919. [14] CUI Q, JO WL, KOO KH, et al. ARCO Consensus on the Pathogenesis of Non-traumatic Osteonecrosis of the Femoral Head. J Korean Med Sci. 2021;36(10):e65. [15] CAI T, CHEN S, WU C, et al. Erythropoietin suppresses osteoblast apoptosis and ameliorates steroid-induced necrosis of the femoral head in rats by inhibition of STAT1-caspase 3 signaling pathway. BMC Musculoskelet Disord. 2023;24(1):894. [16] DIRCKX N, MOORER MC, CLEMENS TL, et al. The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol. 2019;15(11):651-665. [17] 张鑫,张晓峰,徐西林,等.激素对H型血管的抑制作用与骨质疏松症发病的探讨[J].中国骨质疏松杂志,2022,28(5):706-712. [18] HUANG C, WEN Z, NIU J, et al. Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front Cell Dev Biol. 2021;9:777697. [19] 刘聪,郭非非,肖军平,等.杜仲不同部位化学成分及药理作用研究进展[J].中国中药杂志,2020,45(3):497-512. [20] WANG Y, ZHANG J, WANG L, et al. Twelve-component pharmacokinetic study of rat plasma after oral administration of You-Gui-Wan in osteoporosis rats with kidney-yin deficiency and kidney-yang deficiency. Biomed Chromatogr. 2023;37(6):e5619. [21] 谢高倩,高玉海,魏朋,等.松脂醇二葡萄糖苷对青年大鼠骨代谢的影响[J].中国药理学通报,2022,38(12):1785-1790. [22] LEE JH, WEI YJ, ZHOU ZY, et al. Efficacy of the herbal pair, Radix Achyranthis Bidentatae and Eucommiae Cortex, in preventing glucocorticoid-induced osteoporosis in the zebrafish model. J Integr Med. 2022;20(1):83-90. [23] DE VRIES TJ, KLEEMANN AS, JIN J, et al. The Differential Effect of Metformin on Osteocytes, Osteoblasts, and Osteoclasts. Curr Osteoporos Rep. 2023;21(6):743-749. [24] VLASHI R, ZHANG X, WU M, et al. Wnt signaling: Essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis. 2023;10(4): 1291-1317. [25] MOORER MC, RIDDLE RC. Regulation of Osteoblast Metabolism by Wnt Signaling. Endocrinol Metab (Seoul). 2018;33(3):318-330. [26] OTON-GONZALEZ L, MAZZIOTTA C, IAQUINTA MR, et al. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int J Mol Sci. 2022;23(3):1500. [27] LIU J, XIAO Q, XIAO J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3. [28] RONG X, KOU Y, ZHANG Y, et al. ED-71 Prevents Glucocorticoid-Induced Osteoporosis by Regulating Osteoblast Differentiation via Notch and Wnt/β-Catenin Pathways. Drug Des Devel Ther. 2022;16:3929-3946. [29] MIZOKAMI A, KAWAKUBO-YASUKOCHI T, HIRATA M. Osteocalcin and its endocrine functions. Biochem Pharmacol. 2017;132:1-8. [30] CAMOZZI V, TOSSI A, SIMONI E, et al. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Invest. 2007;30(6 Suppl):13-17. [31] DEPALLE B, MCGILVERY CM, NOBAKHTI S, et al. Osteopontin regulates type I collagen fibril formation in bone tissue. Acta Biomater. 2021; 120:194-202. [32] XUE Z, WANG X, XU D. Molecular investigations of the prenucleation mechanism of bone-like apatite assisted by type I collagen nanofibrils: insights into intrafibrillar mineralization. Phys Chem Chem Phys. 2022; 24(31):18931-18942. [33] FERRARO V, GAILLARD-MARTINIE B, SAYD T, et al. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential. Int J Biol Macromol. 2017;97:55-66. |
[1] | Han Haihui, Ran Lei, Meng Xiaohui, Xin Pengfei, Xiang Zheng, Bian Yanqin, Shi Qi, Xiao Lianbo. Targeting fibroblast growth factor receptor 1 signaling to improve bone destruction in rheumatoid arthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1905-1912. |
[2] | Zhao Jiyu, Wang Shaowei. Forkhead box transcription factor O1 signaling pathway in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1923-1930. |
[3] | Yin Lu, Jiang Chuanfeng, Chen Junjie, Yi Ming, Wang Zihe, Shi Houyin, Wang Guoyou, Shen Huarui. Effect of Complanatoside A on the apoptosis of articular chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1541-1547. |
[4] | Zhu Hanmin, Wang Song, Xiao Wenlin, Zhang Wenjing, Zhou Xi, He Ye, Li Wei, . Mitophagy regulates bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1676-1683. |
[5] | Chi Wenxin, Zhang Cunxin, Gao Kai, Lyu Chaoliang, Zhang Kefeng. Mechanism by which nobiletin inhibits inflammatory response of BV2 microglia [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1321-1327. |
[6] | Hu Taotao, Liu Bing, Chen Cheng, Yin Zongyin, Kan Daohong, Ni Jie, Ye Lingxiao, Zheng Xiangbing, Yan Min, Zou Yong. Human amniotic mesenchymal stem cells overexpressing neuregulin-1 promote skin wound healing in mice [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1343-1349. |
[7] | Liu Qi, Li Linzhen, Li Yusheng, Jiao Hongzhuo, Yang Cheng, Zhang Juntao. Icariin-containing serum promotes chondrocyte proliferation and chondrogenic differentiation of stem cells in the co-culture system of three kinds of cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1371-1379. |
[8] | Aikepaer · Aierken, Chen Xiaotao, Wufanbieke · Baheti. Osteogenesis-induced exosomes derived from human periodontal ligament stem cells promote osteogenic differentiation of human periodontal ligament stem cells in an inflammatory microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1388-1394. |
[9] | Lan Shuangli, Xiang Feifan, Deng Guanghui, Xiao Yukun, Yang Yunkang, Liang Jie. Naringin inhibits iron deposition and cell apoptosis in bone tissue of osteoporotic rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 888-898. |
[10] | Lang Mecuo, Zhang Yilin, Wang Li. MiR-338-3p affects proliferation and apoptosis of alveolar bone osteoblasts by targeting receptor activator of nuclear factor-kappaB ligand [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 899-907. |
[11] | Xiao Fang, Huang Lei, Wang Lin. Magnetic nanomaterials and magnetic field effects accelerate bone injury repair [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 827-838. |
[12] | Liu Chengyuan, Guo Qianping. Differential effects of kartogenin on chondrogenic and osteogenic differentiation of rat and rabbit bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7490-7498. |
[13] | Fang Yuan, Qian Zhiyong, He Yuanhada, Wang Haiyan, Sha Lirong, Li Xiaohe, Liu Jing, He Yachao, Zhang Kai, Temribagen. Mechanism of Mongolian medicine Echinops sphaerocephalus L. in proliferation and angiogenesis of vascular endothelial cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7519-7528. |
[14] | Han Jie, Pan Chengzhen, Shang Yuzhi, Zhang Chi. Identification of immunodiagnostic biomarkers and drug screening for steroid-induced osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7690-7700. |
[15] | Shi Tongtong, Deng Rongxia, Zhang Jianguang. Differences in physicochemical properties and collagen secretion stimulation of natural and synthetic hydroxyapatite particles [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7278-7285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||