Chinese Journal of Tissue Engineering Research ›› 2026, Vol. 30 ›› Issue (14): 3702-3708.doi: 10.12307/2026.027
Previous Articles Next Articles
Li He, Wang Yu, Xie Zikang, Jiang Tao
Received:
2025-02-06
Accepted:
2025-04-17
Online:
2026-05-18
Published:
2025-09-12
Contact:
Jiang Tao, MD, Doctoral supervisor, Chief physician, Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou 213006, Jiangsu Province, China
About author:
Li He, MD, Attending physician, Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou 213006, Jiangsu Province, China
CLC Number:
Li He, Wang Yu, Xie Zikang, Jiang Tao. Application of electrospinning in artificial dura mater substitutes: diverse biological functions[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(14): 3702-3708.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.2 硬膜修复替代物类型 目前,用于硬膜修复的替代物主要分为自体组织、同种异体类、异种类和人工合成类4种。常用的自体组织主要有颅骨骨膜、阔筋膜、脂肪组织、肌肉等[14-15]。自体组织具有无需额外消毒、不引起排异反应、无疾病传播风险等优点,但取材相对有限,还会增加取材部位的创伤,延长了手术时间,而且术后有瘢痕粘连的风险。同种异体材料主要是对于人尸体硬脑膜进行灭活处理后作为硬膜替代物使用,但是这种替代物被报道有传播疾病的风险,特别是Creutzfeldt-Jakob疾病[16];目前也有采用异体羊膜进行加工处理作为人工硬膜移植物[17],但是这种异体材料缺少来源,无法推广使用。异种类硬膜补片主要通过对动物来源的组织进行加工处理,主要有两种方式:第一种是通过对牛、猪心包膜、猪小肠黏膜、真皮组织等进行冻干、交联、去抗原、脱细胞等一系列处理,获得具有细胞外基质纤维支架的硬膜替代物;第二种是对牛、马等动物的跟腱进行胶原提取,获得基于胶原的硬膜替代物[18]。SEO等[19]在大型动物模型中使用猪心包膜作为硬膜移植物进行硬脑膜成形术,术后3个月未出现脑脊液渗漏,组织学上没有发现不良反应,但是应用于临床实践还需要进一步研究评估。这些动物组织虽然都经过了处理,但是植入人体后仍有免疫排斥反应和疾病传播的风险。近年来,随着生物工程材料的迅速发展,人工合成硬膜替代物也成为重建修复硬膜缺损的重要选择之一[20],人工合成硬膜替代物具有生产成本低、力学性能良好、无疾病传播风险等优点。"
2.3 人工硬膜替代物的分类 不可降解类主要有硅片和膨胀聚四氟乙烯[21]。ZHANG等[22]发明了一种电子人工脑膜,它是由聚二甲基硅氧烷弹性体和用单层石墨烯层压的超高分子质量聚乙烯纳米多孔膜复合而成,与天然硬脑膜的机械性能相匹配,作为电子硬脑膜可以通过压阻传感监测颅内压的变化。不可降解类人工硬膜在植入体内后存在长期异物反应,导致肉芽组织形成的风险。 可降解类人工硬膜可以分为天然聚合物类和合成聚合物类。天然类聚合物主要有壳聚糖[23]、明胶[24]、细菌纤维素[25]、丝素蛋白[26]、海藻酸盐等[27]。 POGORIELOV等[28]研究了一种新型几丁质-壳聚糖的人工硬膜,具有抗菌、促进细胞生长和可降解的特性。DENG等[29]研究了一种新型的双层硬脑膜替代物,其多孔层是由羧甲基壳聚糖和细菌纤维素膜组成的复合多糖支架通过戊二醛或柠檬酸交联所得,致密层由高分子质量的壳聚糖和细菌纤维素组成,具有良好的溶胀率及促进细胞增殖的功能。然而,这些天然类聚合物多数存在力学强度弱、降解周期太快等缺点。合成类聚合物有聚乳酸、聚氨酯、聚乙二醇、聚己内酯、聚乙醇酸和聚(3-羟基丁酸酯-3羟基戊酸酯)等,这些是医用生物材料中常见的具有良好生物相容性的高分子聚合物,它们作为硬膜替代物的方式有水凝胶补片、薄膜、网状膜等[30],这些各向同性的替代物不能很好地促进细胞黏附和增殖,无法发挥优异的生物学功能。 "
2.4 静电纺丝结构型人工硬膜替代物 一些学者利用静电纺丝对不同聚合物的纳米纤维进行结构设计,制备出具有不同功能的人工硬膜替代物[31-32]。将两者或多种不同类型聚合物整合一起,作为复合材料用于人工硬膜替代物的设计具有巨大的潜力。利用天然聚合物和合成聚合物进行混合静电纺丝的纳米纤维,用于硬膜修复时可以获得较好的结构特性,一方面通过天然类聚合物提高其生物相容性,另一方面合成类聚合物可以提供满意的力学强度。 2.4.1 仿生取向纤维结构类 纳米纤维的取向可以影响纤维膜的形态、力学性能和光电性能,从而导致对细胞行为的改变[33]。具有纤维取向结构的纤维膜可以促进细胞的黏附、伸展、增殖,还可以调控细胞的分化和表型,因此被广泛应用于肌腱、韧带、血管、神经和骨膜等组织的再生修复研究[34–38]。许多学者受天然硬膜纤维结构启发,通过静电纺丝模拟天然硬膜,设计力学性能和结构与其相类似的人工硬膜替代物[39]。XIE等[40]用改良静电纺丝制备了纤维放射状取向排列分布的聚己内酯纳米纤维支架,与随机无规则纳米纤维膜相比,取向排列分布的聚己内酯纳米纤维支架可以引导并促进细胞的定向迁移和增殖,使其分泌的Ⅰ型胶原蛋白也呈取向排列,类似于硬膜中的细胞外基质结构,更加有效地促进硬膜的重塑和修复。CHUAN等[41]通过静电纺丝制备了基于聚左旋乳酸、聚右旋乳酸接枝磷酸四钙的立体复合纳米纤维膜,这种纳米纤维膜的拉伸强度和断裂伸长率非常接近于人类硬膜,并证实该纳米纤维膜上接种的骨髓间充质干细胞可以向神经元样分化,良好的神经元相容性表明了该纤维膜作为硬膜替代物的优秀潜力。这些类型的人工硬膜是单层结构,功能相对单一,未能实现人工硬膜的抗粘连、防渗漏等功能要求。 2.4.2 不对称双层结构类 不对称双层结构的纤维膜,通过各向异性的结构设计使得双层发挥不同的功能,更好地满足硬膜损伤修复需求[42]。YU等[43]发明了一种由双层静电纺丝膜、真皮成纤维细胞和贻贝黏附蛋白组成的复合支架来修复硬膜缺损,其中定向微结构的聚乳酸-羟基乙酸共聚物作为内层,壳聚糖涂层的非编织聚乳酸-羟基乙酸共聚物作为外层,内层作为锚定真皮成纤维细胞的基质,外层用来增强基质的力学性能,通过山羊腰椎硬膜缺损实验证明了该复合支架可以实现密封缺损和促进缺损修复的效果。于凤宾等[44]报道了一种组织工程化复合聚乳酸-羟基乙酸共聚物人工硬脊膜,这种人工硬脊膜具有双层结构,内层为取向聚乳酸-羟基乙酸共聚物纳米纤维膜,可以作为成纤维细胞接种层,从而促进硬脊膜缺损修复,外层为无取向的聚乳酸-羟基乙酸共聚物-壳聚糖纳米纤维膜片,可以预防硬膜外粘连及瘢痕形成,但是他们只从体外实验进行了间接验证,并没有进行动物实验来观察体内效果。KURPINSKI等[45]利用传统静电纺丝制备了一种双层结构的硬膜替代物,下层是取向分布的纳米纤维,上层是随机分布的纳米纤维,双层纳米纤维排列获得了各向异性的力学特性,其强度和可缝合性都高于商品化的胶原基质类硬膜,在犬实验中证实了该纳米纤维支架的上层可以起到预防脑脊液渗漏和预防粘连的效果,取向纳米纤维结构的下层可以促进硬膜的愈合,效果类似于动物胶原基质类。XU等[46]利用静电纺丝设计了一种以细胞外基质为启发的双层各向异性微纳米纤维支架用于硬脊膜修复,内层面由丝素蛋白和Ⅰ型胶原蛋白组成,具有取向分布的纤维拓扑结构,外层面为高密度的丝素蛋白微纤维,通过动物实验证明了该支架内层面可以促进硬膜的再生、外层面可以预防硬膜外纤维化,但是未对其密封防渗漏性进行测试。 2.4.3 多层复合结构类 多层结构的纤维膜可以更好低模拟硬膜的微结构和多功能。SU等[47]通过静电纺丝和基于熔体的电流体动力喷射技术制备了一种3层结构的人工硬脑膜,负载硫酸庆大霉素且高度取向的聚己内酯纳米纤维模拟天然硬膜的有序胶原纤维,随机分布的载庆大霉素的聚己内酯纤维膜作为中间层,随机纤维可以增强支架的力学性能,含有纳米羟基磷灰石的聚己内酯微米纤维膜作为最外层,作为提高和颅骨整合的有效层,这种3层结构的支架与天然猪硬膜的力学强度相似,其中庆大霉素可以发挥抗菌作用,纳米羟基磷灰石发挥促成骨分化作用。WANG等[48]制备了一种由聚左乳酸、聚己内酯和胶原组成的多层仿生结构支架用于促进硬膜损伤修复,其内层由聚左乳酸组成,可以减少组织粘连,中间层有由聚己内酯和聚乳酸组成,提供机械支撑和密封防水性,最外层由胶原和聚乳酸组成,可以促进细胞黏附和增殖,通过将支架植入兔模型中证明了其可以提供充足的机械强度和生物特性,用于促进硬膜的修复。GHEZZI等[49]制备了一种载间充质干细胞的“三明治”结构的组织工程支架,上、下层由致密的胶原组成,中间层由静电纺丝丝素蛋白构成,中间层为支架提供机械支撑,上、下层胶原为间充质干细胞提供类细胞外基质的生长环境,具有制备简单、生物机械性能满意的优点,可有效促进硬膜组织的再生,但是研究中并未探讨预防硬膜粘连发生的情况。 "
2.5 静电纺丝功能型人工硬膜替代物 2.5.1 密封、预防脑脊液漏类 DENG等[50]设计了一种以聚左乳酸和明胶为主的仿生硬膜替代物,研究了其体外生物特性和促进组织再生性,结果发现该复合材料的支架可以促进硬膜细胞的生长和组织再生,还可以实现预防脑脊液漏和预防感染的作用。LV等[51]首先通过原位静电纺丝氰基丙烯酸正辛酯至纤维膜表面获得了氰基丙烯酸正辛酯纤维膜,用于处理硬膜缺损,分别通过体外鸡蛋卵膜和体内山羊脑膜进行了验证,证明氰基丙烯酸正辛酯纤维膜具有较强的黏附力、良好的弹性和密封防水性,体内实验证明了这种具有黏性的弹性膜不仅可以封堵硬膜缺损,还可以预防组织粘连。但是氰基丙烯酸正辛酯属于氰基丙烯酸酯类,具有一定的生物毒性,生物安全性方面还需要进一步改善。MA等[52]利用静电纺丝聚(4-羟基丁酸)制备了一种具有高强度和良好韧性的可吸收纤维膜作为人工硬膜替代物,在兔硬脑膜修复实验中证明它可以发挥预防脑脊液和促进硬膜组织生长的作用,同时不会造成严重的局部异物反应。SUN等[53]通过溶液吹塑纺丝制备的明胶微纤维和多巴胺封端的聚氨酯生物黏合剂结合一起制备了一种人工硬膜,在湿性环境下具有良好的密封性,有效防止了脑脊液渗漏,但是该人工硬膜的力学性能与正常硬膜并不能完全匹配。 2.5.2 预防粘连和瘢痕增生类 硬膜外粘连和瘢痕形成是硬膜损伤常见的并发症之一,如何预防硬膜外粘连的发生也是人工硬膜替代物研究的重要方向之一[54]。SHI等[55]通过静电纺丝制备了聚己内酯和明胶纳米纤维膜,这种复合材料纤维膜具有较强的拉伸强度、良好的生物相容性和体内较长的降解周期,利用兔体内实验验证了其具有有效的抗粘连特性。WANG等[56]将聚乳酸-羟基乙酸共聚物、川穹嗪和壳聚糖作为组分通过同轴静电纺丝制备了人工硬膜替代物,实验发现这种人工硬膜替代物具有抑制成纤维细胞过度增殖、抗粘连和抑制瘢痕组织增生的功能,同时还可以发挥保护神经的作用。LIU等[57]通过静电纺丝合成了一种由布洛芬和聚(甲基丙烯酸羟乙酯-布洛芬)及聚乳酸-羟基乙酸共聚物组成的纤维膜,在大鼠体内实验中证明其可以发挥抗硬膜外粘连、抗炎作用,同时显著降低了神经功能受损的发生。SHI等[58]设计了一种负载药物的双层支架用于预防硬膜外粘连,支架的双层分别由不同比例的聚己内酯和壳聚糖组成,负载美洛昔康的支架底层接触硬膜,用于预防炎症;负载丝裂霉素C的支架上层接触纤维组织,用于抑制细胞DNA和胶原合成,研究表明药物可以从支架中释放12 d,而且支架没有细胞毒性,可以抑制成纤维细胞的增殖,如何维持更长时间的效果是他们后续需要研究的重点。JING等[59]设计了一种新型静电纺丝细菌纤维素膜用于修复硬膜缺损,通过体内外实验发现,与普通细菌纤维素膜比,该新型菌纤维素膜具有更好的孔隙率、更规则的纤维结构、更出色的生物相容性,用于兔硬脑膜缺损模型中可以促进更多的胶原纤维沉积、减少脑组织粘连与硬膜外瘢痕纤维化,但是细菌纤维素膜为不可降解,会不会引起异物炎症反应也是需要研究观察的问题。 2.5.3 抗菌类 为了预防硬膜损伤术后发生感染并发症,有学者设计了具有抗菌效果的人工硬膜替代物。WANG等[60]设计并制造了一种多功能的硬膜修复材料以仿生天然硬膜的结构,应用聚左乳酸、壳聚糖、明胶和小肠黏膜下层粉末制备了3层结构的复合支架,其下层为聚左乳酸静电纺丝纤维膜,中间层为聚左乳酸和壳聚糖纺丝纤维膜,上层为明胶,壳聚糖和小肠黏膜下层粉末混合物通过京尼平交联的水凝胶层,这种支架可以发挥黏附封堵渗漏、预防粘连、抗菌和重建硬膜的功能,但是关于小肠黏膜下层粉末是否会引起排异反应并未进行描述。SANPAKITWATTANA等[61]将头孢唑林引入氧化再生纤维素和聚己内酯的复合膜中赋予这种硬膜替代物抗菌功能,这种复合膜具有类似天然硬膜的物理和机械性能,同时表现头孢唑林的单相释放,其抗菌活性可以维持4 d,抗菌维持时间相对较短且引入的抗生素种类相对单一。 2.5.4 促进神经组织修复类 硬膜损伤时常伴有神经组织损伤,因此,有学者利用人工硬膜替代物负载神经因子发挥调控和促进神经细胞增殖、分化的作用,从而实现促进神经组织修复。MOHTARAM等[62]合成了一种胶质细胞源性神经营养因子包裹的聚己内酯纳米纤维支架作为人工硬膜,研究了关于胶质细胞源性神经营养因子在30 d内从支架释放的动力学,控释的胶质细胞源性神经营养因子可以促进神经元的存活,这种人工硬膜可以用于硬膜损伤导致的神经系统疾病,这种人工硬膜的生产成本相对较高,对胶质细胞源性神经营养因子的负载含量也是一个值得探究的问题。ZHU等[63]发明了一种负载咯利普兰的纳米纤维支架,这种支架是由聚左乳酸和聚乳酸-羟基乙酸共聚物共混静电纺丝制备而成的双层结构,内侧为有序纤维,外层为无规则随机纤维,动物实验证实了该支架不仅可以引导轴突的生长、促进血管生长,还可以释放药物促进脊髓组织的再生。ZHAO等[64]通过静电纺丝制备了聚(羟基丁酸酯-共-羟基戊酸酯)、聚乳酸和胶原蛋白的纤维膜,通过动物硬膜成形实验证明了它可以通过抑制炎性体激活、调节巨噬细胞极化来减少神经胶质瘢痕的形成并促进轴突的生长,具有促进神经功能恢复的作用,但未进一步对神经功能恢复程度进行量化分级,也未对促神经修复的机制进行探讨。 "
[1] SHI S, SI Y, HAN Y, et al. Recent Progress in Protective Membranes Fabricated via Electrospinning: Adv. Mater., Biomimetic Structures, and Functional Applications. Adv Mater. 2022;34(17):2107938. [2] SI Y, SHI S, HU J. Applications of electrospinning in human health: From detection, protection, regulation to reconstruction. Nano Today. 2023;48:101723. [3] SALEHHUDIN HS, MOHAMAD EN, MAHADI WNL, et al. Multiple-jet electrospinning methods for nanofiber processing: A review. Mater Manuf Process. 2018;33(5):479-498. [4] ZHI C, SHI S, SI Y, et al. Recent Progress of Wearable Piezoelectric Pressure Sensors Based on Nanofibers, Yarns, and Their Fabrics via Electrospinning. Adv Mater Technol. 2023;8(5):2201161. [5] DOU Y, ZHANG W, KAISER A. Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications. Adv Sci. 2020;7(3):1902590. [6] KEIROUZ A, WANG Z, REDDY VS, et al. The History of Electrospinning: Past, Present, and Future Developments. Adv Mater Technol. 2023;8(11):2201723. [7] LOSCERTALES IG, BARRERO A, GUERRERO I, et al. Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets. Science. 2002;295(5560):1695-1698. [8] YANG Z, GAO M, LIANG W, et al. One-dimensional electrospinning nanomaterials toward capacitive deionization: Fundamentals, development, and perspectives. Desalination. 2023;567:117010. [9] ZULKIFLI MZA, NORDIN D, SHAARI N, et al. Overview of Electrospinning for Tissue Engineering Applications. Polymers. 2023; 15(11):2418. [10] HAN W, WANG L, SUN J, et al. Dual-Drug-Loaded Core–Shell Electrospun Nanofiber Dressing for Deep Burns. ACS Appl Bio Mater. 2024;7(2):1179-1190. [11] PIEN N, KRZYSLAK H, SHASTRY KALLAJE S, et al. Tissue engineering of skeletal muscle, tendons and nerves: A review of manufacturing strategies to meet structural and functional requirements. Appl Mater Today. 2023;31:101737. [12] MACEWAN MR, KOVACS T, OSBUN J, et al. Comparative analysis of a fully-synthetic nanofabricated dura substitute and bovine collagen dura substitute in a large animal model of dural repair. Interdiscip Neurosurg. 2018;13:145-150. [13] 陈亮,许运.静电纺丝微米/纳米纤维材料在硬膜组织损伤修复中的应用[J].中华实验外科杂志,2016,33(7):1880-1883. [14] SABATINO G, DELLA PEPA GM, BIANCHI F, et al. Autologous dural substitutes: A prospective study. Clin Neurol Neurosurg. 2014;116:20-23. [15] BOHOUN CA, GOTO T, MORISAKO H, et al. Skull Base Dural Repair Using Autologous Fat as a Dural Substitute: An Efficient Technique. World Neurosurg. 2019;127:e896-e900. [16] MIYASHITA K, INUZUKA T, KONDO H, et al. Creutzfeldt‐Jakob disease in a patient with a cadaveric dural graft. Neurology. 1991;41(6):940. [17] TURCHAN A, ROCHMAN TF, IBRAHIM A, et al. Duraplasty using amniotic membrane versus temporal muscle fascia: A clinical comparative study. J Clin Neurosci. 2018; 50:272-276. [18] KNOPP U, CHRISTMANN F, REUSCHE E, et al. A new collagen biomatrix of equine origin versus a cadaveric dura graft for the repair of dural defects – a comparative animal experimental study. Acta Neurochir. 2005;147(8):877-887. [19] SEO Y, KIM JW, DHO YS, et al. Evaluation of the safety and effectiveness of an alternative dural substitute using porcine pericardium for duraplasty in a large animal model. J Clin Neurosci. 2018;58:187-191. [20] WANG W, QIANG A. Research and application progress on dural substitutes. J Neuroresstoratology. 2019;7(4):161-170. [21] ATTENELLO FJ, MCGIRT MJ, GARCÉS-AMBROSSI GL, et al. Suboccipital decompression for Chiari I malformation: outcome comparison of duraplasty with expanded polytetrafluoroethylene dural substitute versus pericranial autograft. Childs Nerv Syst. 2009;25(2):183-190. [22] ZHANG Q, LI R, LI J, et al. PDMS/Uhmwpe Dura Mater Substitute Laminated with Conductive Graphene for Intracranial Pressure Sensing. ECS MA. 2019;(44):2097. [23] SANDOVAL-SÁNCHEZ JH, RAMOS-ZÚÑIGA R, LUQUÍN DE ANDA S, et al. A New Bilayer Chitosan Scaffolding as a Dural Substitute: Experimental Evaluation. World Neurosurgery. 2012;77(3-4):577-582. [24] MATSUMOTO K, NAKAMURA T, FUKUDA S, et al. A Gelatin Coated Collagen-Polyglycolic Acid Composite Membrane as a Dural Substitute. ASAIO J. 2001;47(6):641-645. [25] XU C, MA X, CHEN S, et al. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits. Int J Mol Sci. 2014;15(6):10855-10867. [26] KIM DW, EUM WS, JANG SH, et al. A transparent artificial dura mater made of silk fibroin as an inhibitor of inflammation in craniotomized rats: Laboratory investigation. J Neurosurg. 2011;114(2):485-490. [27] NUNAMAKER EA, OTTO KJ, KIPKE DR. Investigation of the material properties of alginate for the development of hydrogel repair of dura mater. J Mech Behav Biomed Mater. 2011;4(1):16-33. [28] POGORIELOV M, KRAVTSOVA A, REILLY GC, et al. Experimental evaluation of new chitin–chitosan graft for duraplasty. J Mater Sci Mater Med. 2017;28(2):34. [29] DENG W, TAN Y, RIAZ RAJOKA MS, et al. A new type of bilayer dural substitute candidate made up of modified chitin and bacterial cellulose. Carbohydr Polym. 2021;256:117577. [30] KINACI A, VAN THOOR S, REDEGELD S, et al. Ex vivo evaluation of a multilayered sealant patch for watertight dural closure: cranial and spinal models. J Mater Sci Mater Med. 2021;32(8):85. [31] XU Y, CUI W, ZHANG Y, et al. Hierarchical Micro/Nanofibrous Bioscaffolds for Structural Tissue Regeneration. Adv Healthc Mater. 2017;6(13):1601457. [32] LIU W, THOMOPOULOS S, XIA Y. Electrospun Nanofibers for Regenerative Medicine. Adv Healthc Mater. 2012;1(1): 10-25. [33] LIU Y, GUO Q, ZHANG X, et al. Progress in Electrospun Fibers for Manipulating Cell Behaviors. Adv Fiber Mater. 2023;5(4): 1241-1272. [34] POZZOBON LG, SPERLING LE, TEIXEIRA CE, et al. Development of a conduit of PLGA-gelatin aligned nanofibers produced by electrospinning for peripheral nerve regeneration. Chem Biol Interact. 2021;348: 109621. [35] YIN Z, CHEN X, SONG H, et al. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Biomaterials. 2015;44:173-185. [36] KOBAYASHI M, LEI NY, WANG Q, et al. Orthogonally oriented scaffolds with aligned fibers for engineering intestinal smooth muscle. Biomaterials. 2015;61:75-84. [37] YAU WWY, LONG H, GAUTHIER NC, et al. The effects of nanofiber diameter and orientation on siRNA uptake and gene silencing. Biomaterials. 2015;37:94-106. [38] GUO Z, XU J, DING S, et al. In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering. J Biomater Sci Polym Ed. 2015;26(15):989-1001. [39] PROTASONI M, SANGIORGI S, CIVIDINI A, et al. The collagenic architecture of human dura mater: Laboratory investigation. J Neurosurg. 2011;114(6):1723-1730. [40] XIE J, MACEWAN MR, RAY WZ, et al. Radially Aligned, Electrospun Nanofibers as Dural Substitutes for Wound Closure and Tissue Regeneration Applications. ACS Nano. 2010; 4(9):5027-5036. [41] CHUAN D, WANG Y, FAN R, et al. Fabrication and Properties of a Biomimetic Dura Matter Substitute Based on Stereocomplex Poly(lactic Acid) Nanofibers. Int J Nanomed. 2020;15:3729-3740. [42] 徐敬之,王文博,孙慧雯,等.干细胞工程化双面异性静电纺丝膜促进硬脊膜修复的体外实验[J].中国组织工程研究, 2024,28(10):1540-1546. [43] YU F, LI Q, YIN S, et al. Reconstructing spinal dura-like tissue using electrospun poly(lactide-co-glycolide) membranes and dermal fibroblasts to seamlessly repair spinal dural defects in goats. J Biomater Appl. 2015;30(3):311-326. [44] 于凤宾,董波,岑莲,等.体外构建并评价组织工程化复合PLGA人工硬脊膜[J].现代医药卫生,2020,36(5):663-667. [45] KURPINSKI K, PATEL S. Dura mater regeneration with a novel synthetic, bilayered nanofibrous dural substitute: an experimental study. Nanomedicine. 2011;6(2):325-337. [46] XU Y, SHI G, TANG J, et al. ECM-inspired micro/nanofibers for modulating cell function and tissue generation. Sci Adv. 2020;6(48):eabc2036. [47] SU Y, LI Z, ZHU H, et al. Electrohydrodynamic Fabrication of Triple-layered Polycaprolactone Dura Mater Substitute with Antibacterial and Enhanced Osteogenic Capability. CJME:AMF. 2022;1(2):100026. [48] WANG Y, GUO H, YING D. Multilayer scaffold of electrospun PLA–PCL–collagen nanofibers as a dural substitute. J Biomed Mater Res B Appl Biomater. 2013;101(8):1359-1366. [49] GHEZZI CE, MARELLI B, MUJA N, et al. Mesenchymal stem cell‐seeded multilayered dense collagen‐silk fibroin hybrid for tissue engineering applications. Biotechnol J. 2011;6(10):1198-1207. [50] DENG K, YANG Y, KE Y, et al. A novel biomimetic composite substitute of PLLA/gelatin nanofiber membrane for dura repairing. Neurol Res. 2017;39(9):819-829. [51] LV FY, DONG RH, LI ZJ, et al. In situ precise electrospinning of medical glue fibers as nonsuture dural repair with high sealing capability and flexibility. Int J Nanomed. 2016;11:4213-4220. [52] MA H, SUN Y, TANG Y, et al. Robust Electrospun Nanofibers from Chemosynthetic Poly(4‐hydroxybutyrate) as Artificial Dural Substitute. Macromol Biosci. 2021;21(7):2100134. [53] SUN S, LUO H, WANG Y, et al. Artificial spinal dura mater made of gelatin microfibers and bioadhesive for preventing cerebrospinal fluid leakage. Chem Commun. 2024;60(17): 2353-2356. [54] 王汉斌,苏亦兵,史良,等.一种聚己内酯/明胶膜对兔颅骨缺损模型的防黏连作用[J].中国微侵袭神经外科杂志, 2016,21(11):516-519. [55] SHI R, XUE J, WANG H, et al. Fabrication and evaluation of a homogeneous electrospun PCL–gelatin hybrid membrane as an anti-adhesion barrier for craniectomy. J Mat Chem B. 2015;3(19):4063-4073. [56] WANG S, YU P, LI X, et al. Design and fabrication of functional hydrogels with specific surface wettability. Colloid Interface Sci Commun. 2023;52:100697. [57] LIU S, PAN G, LIU G, et al. Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy. J Control Release. 2017;264:1-13. [58] SHI R, HUANG Y, ZHANG J, et al. Effective delivery of mitomycin‐C and meloxicam by double‐layer electrospun membranes for the prevention of epidural adhesions. J Biomed Mater Res Part B. 2020;108(2):353-366. [59] JING Y, MA X, XU C, et al. Repair of dural defects with electrospun bacterial cellulose membranes in a rabbit experimental model. Mater Sci Eng C Mater Biol Appl. 2020;117:111246. [60] WANG J, LI K, XU J, et al. A biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure for dural repair. J Mat Chem B. 2021;9(37):7821-7834. [61] SANPAKITWATTANA A, SUVANNAPRUK W, CHUMNANVEJ S, et al. Cefazolin Loaded Oxidized Regenerated Cellulose/Polycaprolactone Bilayered Composite for Use as Potential Antibacterial Dural Substitute. Polymers. 2022;14(20):4449. [62] MOHTARAM NK, KO J, AGBAY A, et al. Development of a glial cell-derived neurotrophic factor-releasing artificial dura for neural tissue engineering applications. J Mat Chem B. 2015;3(40):7974-7985. [63] ZHU Y, WANG A, SHEN W, et al. Nanofibrous Patches for Spinal Cord Regeneration. Adv Funct. Mater. 2010;20(9):1433-1440. [64] ZHAO T, XU K, WU Q, et al. Duraplasty of PHBV/PLA/Col membranes promotes axonal regeneration by inhibiting NLRP3 complex and M1 macrophage polarization in rats with spinal cord injury. FASEB J. 2020;34(9): 12147-12162. |
[1] | Sun Lei, Zhang Qi, Zhang Yu. Pro-osteoblastic effect of chlorogenic acid protein microsphere/polycaprolactone electrospinning membrane [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1877-1884. |
[2] | Dong Chao, Zhao Mohan, Liu Yunan, Yang Zeli, Chen Leqin, Wang Lanfang. Effects of magnetic nano-drug carriers on exercise-induced muscle injury and inflammatory response in rats [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(2): 345-353. |
[3] | Li Congcong, Wufanbieke·Baheti, Zhao Li, Chen Xiaotao, Kong Chuifan, Yu Min. Physicochemical properties and biocompatibility of hydroxyapatite/graphene oxide/interleukin-4 composite coating materials [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(2): 404-413. |
[4] | Zhang Qian, Wang Fuxia, Wang Wen, Zhang Kun. Characteristic analysis of nanogel composite system and its application strategies in visualization of diagnostic imaging and therapy [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(2): 480-488. |
[5] | Jiang Kan, Alimujiang·Abudourousuli, Shalayiding·Aierxiding, Aikebaierjiang·Aisaiti, Kutiluke·Shoukeer, Aikeremujiang·Muheremu. Biomaterials and bone regeneration: research hotspots and analysis of 500 influential papers [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(2): 528-536. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||