Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (30): 6466-6473.doi: 10.12307/2025.917
Previous Articles Next Articles
Zhang Xin1, Guo Baojuan2, Xu Huixin1, Shen Yuzhen1, Yang Xiaofan3, Yang Xufang1, Chen Pei1
Received:
2024-09-10
Accepted:
2024-11-26
Online:
2025-10-28
Published:
2025-03-28
Contact:
Chen Pei, Associate professor, Master’s supervisor, Department of Pathophysiology, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
About author:
Zhang Xin, MS, Department of Pathophysiology, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
Guo Baojuan, MS, Department of Pathology, Baotou Mongolian Medicine and Traditional Chinese Medicine Hospital, Baotou 014000, Inner Mongolia Autonomous Region, China
Zhang Xin and Guo Baojuan contributed equally to this article.
Supported by:
CLC Number:
Zhang Xin, Guo Baojuan, Xu Huixin, Shen Yuzhen, Yang Xiaofan, Yang Xufang, Chen Pei. Protective effects and mechanisms of 3-N-butylphthalide in Parkinson’s disease cell models[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6466-6473.
2.2 药物-疾病-靶点网络构建并筛选核心靶点 将52个共有基因建立药物潜在靶点的蛋白质互作网络,并导入Cytoscape_v 3.10.1软件,利用MCODE算法筛选出核心靶点共26个,包括基质金属蛋白酶9、GSK-3β等(图2)。 2.3 KEGG及GO富集分析结果 将26个核心靶点进行KEGG与GO富集分析,进一步了解帕金森病相关的通路及功能,将KEGG和GO富集分析中排名前10的结果绘制成气泡图,KEGG结果主要富集于磷脂酰肌醇3-激酶/AKT等信号通路(图3A)。GO分析结果显示,生物过程主要包括对蛋白质磷酸化、氧化应激等反应(图3B),分子功能主要包括DNA结合转录因子活性、蛋白质结合、蛋白激酶结合等(图3C),细胞组分主要包括线粒体及细胞核等(图3D)。"
2.4 分子对接结果 利用PDB数据库筛选得到GSK-3β的3D结构(PDB ID:4AFJ),与丁苯酞进行分子对接,结果显示丁苯酞与GSK-3β的结合口袋形成了合适的空间互补,关键氨基酸包括Arg180、Val214、Lys205。在结合口袋内,丁苯酞与GSK-3β的氨基酸残基Val214形成疏水相互作用力,丁苯酞与GSK-3β氨基酸残基Arg180、Lys205形成盐桥(图4)。一般认为当结合能< 0 kJ/mol时,说明配体和受体可自发结合;结合能< -12.552 kJ/mol时,说明配体和受体具有一定的结合能力;当结合能< -29.288 kJ/mol时,说明配体和受体具有较强烈的结合能力[16-17]。丁苯酞与GSK-3β的结合能为-18.27 kJ/mol,表明丁苯酞与"
GSK-3β具有一定的结合能力。 2.5 细胞实验验证结果 2.5.1 丁苯酞对帕金森病细胞模型AKT/GSK-3β/Nrf2信号通路的影响 Western blot 检测结果显示,与模型组相比,丁苯酞治疗组p-AKT、p-GSK-3β和T-Nrf2蛋白相对表达均高于模型组(P < 0.01或P < 0.05),见图5。 2.5.2 丁苯酞调控AKT/GSK-3β-Nrf2信号通路对帕金森病细胞模型活性的影响 CCK-8检测结果表明,与对照组相比,模型组细胞活性显著下降(P < 0.001);与模型组相比,ML385抑制剂组细胞活性显著下降(P < 0.001),丁苯酞治疗组细胞活性明显升高(P < 0.001);与丁苯酞治疗组相比,丁苯酞联合ML385处理组细胞活性显著下降(P < 0.01),见图6。 2.5.3 丁苯酞调控AKT/GSK-3β-Nrf2信号通路对帕金森病细胞模型氧化损伤的影响 与对照组相比,模型组还原型谷胱甘肽水平降低(P < 0.05),丙二醛水平升高(P < 0.05);与模型组相比,丁苯酞治疗组还原型谷胱甘肽水平升高(P < 0.05),丙二醛水平降低(P < 0.05);与丁苯酞治疗组相比,丁苯酞联合ML385处理组还原型谷胱甘肽水平降低(P < 0.05),丙二醛水平升高(P < 0.05),见图7。 2.5.4 丁苯酞对帕金森病细胞模型Nrf2蛋白表达的影响 Western blot检测结果显示,与对照组相比,模型组T-Nrf2"
[1] DORSEY ER, BLOEM BR. The Parkinson Pandemic—A Call to Action. JAMA Neurol. 2018;75(1):9. [2] INGELSSON M. Alpha-Synuclein Oligomers-Neurotoxic Molecules in Parkinson’s Disease and Other Lewy Body Disorders. Front Neurosci. 2016;10:408. [3] SCHAPIRA AH. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008;7(1):97-109. [4] ZHANG L, GUO Z, WANG Y, et al. The protective effect of kaempferol on heart via the regulation of Nrf2, NF‐κβ, and PI3K/Akt/GSK‐3β signaling pathways in isoproterenol‐induced heart failure in diabetic rats. Drug Dev Res. 2019;80(3):294-309. [5] CHEN N, HU M, JIANG T, et al. Insights into the molecular mechanisms, structure-activity relationships and application prospects of polysaccharides by regulating Nrf2-mediated antioxidant response. Carbohydr Polym. 2024;333:122003. [6] SHAN HUANG S, ZHOU B, XIAN ZENG G, et al. Neuroprotective effect and mechanism of butylphthalide after cerebral ischemia-reperfusion injury in rats. Folia Neuropathol. 2021;59(2):131-142. [7] ZHAO F, LUO Y. Potential Protective Effect of Dl-3-n-butylphthalide on Chronic Cerebral Ischemia Brain Injury. CNS Neurol Disord Drug Targets. 2022;21(9):734-737. [8] HUANG Y, PAN L, WU T. Improvement of cerebral ischemia-reperfusion injury by L-3-n-butylphthalide through promoting angiogenesis. Exp Brain Res. 2021;239(1):341-350. [9] LI F, MA Q, ZHAO H, et al. L-3-n-Butylphthalide reduces ischemic stroke injury and increases M2 microglial polarization. Metab Brain Dis. 2018; 33(6):1995-2003. [10] NIU XL, JIANG X, XU GD, et al. DL-3-n-butylphthalide alleviates vascular cognitive impairment by regulating endoplasmic reticulum stress and the Shh/Ptch1 signaling-pathway in rats. J Cell Physiol. 2019;234(8):12604-12614. [11] BAI M, PAN CL, JIANG GX, et al. Effects of butylphthalide on oxidative stress and inflammatory response in rats with myocardial infarction through Akt/Nrf2 signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(21):9642-9650. [12] WANG BN, WU CB, CHEN ZM, et al. DL-3-n-butylphthalide ameliorates diabetes-associated cognitive decline by enhancing PI3K/Akt signaling and suppressing oxidative stress. Acta Pharmacol Sin. 2021;42(3):347-360.
[13] LIU T, WANG P, Yin H, et al. Rapamycin reverses ferroptosis by increasing autophagy in MPTP/MPP+-induced models of Parkinson’s disease. Neural Regen Res. 2023;18(11):2514-2519. [14] FANG Y, ZHENG Y, GAO Q, et al. Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats. Redox Rep. 2024; 29(1):2394714. [15] CHEN N, ZHOU Z, LI J, et al. 3-n-butylphthalide exerts neuroprotective effects by enhancing anti-oxidation and attenuating mitochondrial dysfunction in an in vitro model of ischemic stroke. Drug Des Dev Ther. 2021;42(3):347-360. [16] 白延璐,张阔,张宇,等.基于网络药理学和分子对接技术探究百合固金汤在肺结核治疗中的作用[J].解剖科学进展,2024,30(6): 593-598. [17] 韩泽璐,沈丽萍,姜怡,等.基于UPLC-Q-TOF-MS联合网络药理学和分子对接技术探讨益气养阴方治疗非小细胞肺癌的潜在作用机制[J].新中医,2024,56(20):156-168. [18] MURAKAMI S, KUSANO Y, OKAZAKI K, et al. NRF2 signalling in cytoprotection and metabolism. Br J Pharmacol. 2023. doi: 10.1111/bph.16246. [19] BRACKHAN M, ARRIBAS-BLAZQUEZ M, LASTRES-BECKER I. Aging, NRF2, and TAU: A Perfect Match for Neurodegeneration? Antioxidants (Basel). 2023;12(8):1564. [20] WANG J, CAO Y, LU Y, et al. Recent progress and applications of small molecule inhibitors of Keap1–Nrf2 axis for neurodegenerative diseases. Eur J Med Chem. 2024;264:115998. [21] ANANDHAN A, CHEN W, NGUYEN N, et al. α-Syn overexpression, NRF2 suppression, and enhanced ferroptosis create a vicious cycle of neuronal loss in Parkinson’s disease. Free Radic Biol Med. 2022; 192:130-140. [22] AMOROSO R, MACCALLINI C, BELLEZZA I. Activators of Nrf2 to Counteract Neurodegenerative Diseases. Antioxidants. 2023;12(3):778. [23] YAN R, LIN B, JIN W, et al. NRF2, a Superstar of Ferroptosis. Antioxidants. 2023;12(9): 1739. [24] MAYER C, RIERA-PONSATI L, KAUPPINEN S, et al. Targeting the NRF2 pathway for disease modification in neurodegenerative diseases: mechanisms and therapeutic implications. Front Pharmacol. 2024;15: 1437939. [25] SAHA S, BUTTARI B, PROFUMO E, et al. A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer’s and Parkinson’s Diseases. Front Cell Neurosci. 2021;15:787258. [26] WANG L, ZHANG X, XIONG X, et al. Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants. 2022;11(12):2377. [27] LEKSHMI VS, ASHA K, SANICAS M, et al. PI3K/Akt/Nrf2 mediated cellular signaling and virus-host interactions: latest updates on the potential therapeutic management of SARS-CoV-2 infection. Front Mol Biosci. 2023;10:1158133. [28] MANNING BD, TOKER A. AKT/PKB Signaling: Navigating the Network. Cell. 2017;169(3):381-405. [29] 胡琪,陶雪,蒋敏,等.丁苯酞治疗帕金森病研究进展[J].医药导报,2023,42(2):203-207. [30] 谷伟,孙梓旭,孙光宁,等.丁苯酞联合重复经颅磁刺激治疗对帕金森病患者认知功能和脑血流动力学的影响[J].中国实用神经疾病杂志,2024,27(5):573-577. [31] MALAGELADA C, JIN ZH, GREENE LA. RTP801 is induced in Parkinson’s disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci. 2008;28(53):14363-14371. [32] FAHMY MI, KHALAF SS, ELRAYESS RA. The neuroprotective effects of alpha lipoic acid in rotenone-induced Parkinson’s disease in mice via activating PI3K/AKT pathway and antagonizing related inflammatory cascades. Eur J Pharmacol. 2024;980:176878. [33] ARAB HH, SAFAR MM, SHAHIN NN. Targeting ROS-Dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 Pathways by Dapagliflozin Attenuates Neuronal Injury and Motor Dysfunction in Rotenone-Induced Parkinson’s Disease Rat Model. ACS Chem Neurosci. 2021;12(4): 689-703. [34] ROJO AI, SAGARRA MR, CUADRADO A. GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem. 2008;105(1): 192-202. [35] YE Z, LI C, LIU S, et al. Dl-3-n-butylphthalide activates Nrf2, inhibits ferritinophagy, and protects MES23.5 dopaminergic neurons from ferroptosis. Chem Biol Interact. 2023;382:110604. [36] LIU HB, LI QY, ZHANG XD, et al. The neuroprotective effects of Galectin-1 on Parkinson’s Disease via regulation of Nrf2 expression. Eur Rev Med Pharmacol Sci. 2022;26(2):623-636. [37] NIU Y, ZHANG J, DONG M. Nrf2 as a potential target for Parkinson’s disease therapy. J Mol Med (Berl). 2021;99(7):917-931. [38] GHAFOURI-FARD S, SHOOREI H, BAHROUDI Z, et al. Nrf2-Related Therapeutic Effects of Curcumin in Different Disorders. Biomolecules. 2022;12(1):82. [39] MORATILLA-RIVERA I, SÁNCHEZ M, VALDÉS-GONZÁLEZ J A, et al. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci. 2023;24(4):3748. [40] CHEN Y, WU T, LI H, et al. Dl-3-n-Butylphthalide Exerts Dopaminergic Neuroprotection Through Inhibition of Neuroinflammation. Front Aging Neurosci. 2019;11:44. [41] LUO R,ZHU L,ZENG Z, et al. Dl-butylphthalide inhibits rotenone-induced oxidative stress in microglia via regulation of the Keap1/Nrf2/HO-1 signaling pathway. Exp Ther Med. 2021;21(6):597. [42] LIU Y, GONG Z, ZHAI D, et al. Unveiling the therapeutic potential of Dl-3-n-butylphthalide in NTG-induced migraine mouse: activating the Nrf2 pathway to alleviate oxidative stress and neuroinflammation. J Headache Pain. 2024;25(1):50. |
[1] | Zhao Jiyu, Wang Shaowei. Forkhead box transcription factor O1 signaling pathway in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1923-1930. |
[2] | Chen Yueping, Chen Feng, Peng Qinglin, Chen Huiyi, Dong Panfeng . Based on UHPLC-QE-MS, network pharmacology, and molecular dynamics simulation to explore the mechanism of Panax notoginseng in treating osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1751-1760. |
[3] | Yin Lu, Jiang Chuanfeng, Chen Junjie, Yi Ming, Wang Zihe, Shi Houyin, Wang Guoyou, Shen Huarui. Effect of Complanatoside A on the apoptosis of articular chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1541-1547. |
[4] | Yu Ting, Lyu Dongmei, Deng Hao, Sun Tao, Cheng Qian. Icariin pretreatment enhances effect of human periodontal stem cells on M1-type macrophages [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1328-1335. |
[5] | Aikepaer · Aierken, Chen Xiaotao, Wufanbieke · Baheti. Osteogenesis-induced exosomes derived from human periodontal ligament stem cells promote osteogenic differentiation of human periodontal ligament stem cells in an inflammatory microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1388-1394. |
[6] | Zhang Haojun, Li Hongyi, Zhang Hui, Chen Haoran, Zhang Lizhong, Geng Jie, Hou Chuandong, Yu Qi, He Peifeng, Jia Jinpeng, Lu Xuechun. Identification and drug sensitivity analysis of key molecular markers in mesenchymal cell-derived osteosarcoma [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1448-1456. |
[7] | Sun Yuting, Wu Jiayuan, Zhang Jian. Physical factors and action mechanisms affecting osteogenic/odontogenic differentiation of dental pulp stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1531-1540. |
[8] | Zhao Ruihua, Chen Sixian, Guo Yang, Shi Lei, Wu Chengjie, Wu Mao, Yang Guanglu, Zhang Haoheng, Ma Yong. Wen-Shen-Tong-Du Decoction promoting spinal cord injury repair in mice [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1118-1126. |
[9] | Zheng Lin, Jin Wenjun, Luo Shanshan, Huang Rui, Wang Jie, Cheng Yuting, An Zheqing, Xiong Yue, Gong Zipeng, Liao Jian. Eucommia ulmoides promotes alveolar bone formation in ovariectomized rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1159-1167. |
[10] | Zhang Debao, Wang Peng, Li Kun, Zhang Shaojie, Li Zhijun, Li Shuwen, Wu Yimin. Epidural fibrous scar formation in rabbits following autologous ligamentum flavum intervention [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1168-1175. |
[11] | He Guanghui, Yuan Jie, Ke Yanqin, Qiu Xiaoting, Zhang Xiaoling. Hemin regulates mitochondrial pathway of oxidative stress in mouse chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1183-1191. |
[12] | Ji Huihui, Jiang Xu, Zhang Zhimin, Xing Yunhong, Wang Liangliang, Li Na, Song Yuting, Luo Xuguang, Cui Huilin, Cao Ximei. SR9009 combined with indolepropionic acid alleviates inflammation in C2C12 myoblasts through the nuclear factor-kappa B signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1220-1229. |
[13] | He Bo, Chen Wen, Ma Suilu, He Zhijun, Song Yuan, Li Jinpeng, Liu Tao, Wei Xiaotao, Wang Weiwei, Xie Jing . Pathogenesis and treatment progress of flap ischemia-reperfusion injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1230-1238. |
[14] | Zhang Wenhua, Li Xun, Zhang Weichao, Li Xinying, Ma Guoao, Wang Xiaoqiang . Promoting myogenesis based on the SphK1/S1P/S1PR2 signaling pathway: a new perspective on improving skeletal muscle health through exercise [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1265-1275. |
[15] | Xu Tianjie, Fan Jiaxin, Guo Xiaoling, Jia Xiang, Zhao Xingwang, Liu kainan, Wang Qian. Metformin exerts a protective effect on articular cartilage in osteoarthritis rats by inhibiting the PI3K/AKT/mTOR pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1003-1012. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 179
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||