Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (27): 5721-5727.doi: 10.12307/2025.195
Mutalipu·Silamujiang1, 2, Yusufu·Reheman1, 2, Ren Zheng1, 2, Alimujiang·Yusufu1, 2, Ran Jian1, 2, Wang Jian1, 2
Received:
2024-03-18
Accepted:
2024-06-03
Online:
2025-09-28
Published:
2025-02-26
Contact:
Wang Jian, Associate chief physician, Sixth Clinical Medical College of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous region, China; First Department of Traumatic Orthopedics, Sixth Clinical Medical College of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous region, China
About author:
Mutalipu·Silamujiang, Physician, Sixth Clinical Medical College of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous region, China; First Department of Traumatic Orthopedics, Sixth Clinical Medical College of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous region, China
Yusufu·Reheman, Master candidate, Sixth Clinical Medical College of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous region, China; First Department of Traumatic Orthopedics, Sixth Clinical Medical College of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous region, China
Mutalipu·Silamujiang and Yusufu·Reheman contributed equally to this article.
Supported by:
CLC Number:
Mutalipu·Silamujiang, Yusufu·Reheman, Ren Zheng, Alimujiang·Yusufu, Ran Jian, Wang Jian. Finite element analysis of three internal fixation methods for treating Pauwels III femoral neck fractures with anterior medial bone defects[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(27): 5721-5727.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] 葛双雷,王雪飞,胡国东,等. 股骨颈动力交叉钉系统治疗中青年PauwelsⅡ型股骨颈骨折临床价值[J]. 中国骨与关节杂志,2022, 11(4):255-260. [2] ZHAO F, GUO L, WANG X, et al. Analysis on risk factors for neck shortening after internal fixation for Pauwels II femoral neck fracture in young patients. Eur J Med Res. 2021;26(1):59. [3] 阿里木江·玉素甫,阿卜杜吾普尔·海比尔,阿不都拉·阿不来提,等.股骨颈动力交叉钉联合空心钉治疗PauwelsⅡ型中青年股骨颈骨折的有限元分析[J].中国组织工程研究,2025,29(15): 3095-3100. [4] SWIONTKOWSKI MF, WINQUIST RA, HANSEN ST JR. Fractures of the femoral neck in patients between the ages of twelve and forty-nine years. J Bone Joint Surg Am. 1984;66(6):837-846. [5] WANG T, LI R, ZHOU J, et al. [Midterm effectiveness of percutaneous compression plate for femoral neck fractures in young and middle-aged patients]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022;36(6): 708-713. [6] 葛双雷, 王雪飞, 刘亮, 等. 股骨颈动力交叉钉系统联合支撑空心螺钉对伴后内侧粉碎的中青年股骨颈骨折的疗效研究[J]. 中华医学杂志,2023,103(21):1631-1637. [7] KLOP C, WELSING PM, COOPER C, et al. Mortality in British hip fracture patients, 2000-2010: a population-based retrospective cohort study. Bone. 2014;66:171-177. [8] 苏志豪, 谭宏莉, 徐子环,等. Pauwels Ⅲ型股骨颈骨折骨缺损不同内固定方案的生物力学分析[J]. 中国骨伤,2023,36(3):255-261. [9] 王清铿, 肖奕增, 尤瑞金, 等. 改良前路结合两种不同固定方式治疗青壮年移位PauwelsⅢ型股骨颈骨折临床疗效比较[J]. 临床和实验医学杂志,2022,21(8):850-853. [10] 王健, 肖军, 赵亮,等. 非骨水泥锥形方柄在股骨近端骨缺损翻修重建中的应用[J]. 中华骨科杂志,2016,36(23):1517-1523. [11] 曹天庆, 程朋真, 杨柳,等. 系统性生物力学评价大鼠股骨缺损修复进程的实验研究[J]. 中华创伤骨科杂志,2018,20(3):247-253. [12] MEYERS MH, HARVEY JP JR, MOORE TM. The muscle pedicle bone graft in the treatment of displaced fractures of the femoral neck: indications, operative technique, and results. Orthop Clin North Am. 1974;5(4): 779-792. [13] ZHU XZ, HAN CX, AI ZS, et al. A quantitative study of bone defects in displaced femoral neck fractures based on virtual reduction techniques. Comput Methods Programs Biomed. 2022;222:106958. [14] 梅炯. 重视对股骨颈骨折的骨缺损评估以优化手术方案决策[J]. 中国骨伤,2023,36(3):199-203. [15] 庄华烽, 李毅中, 林金矿,等. 脆性股骨颈骨折患者股骨颈骨密度及结构的变化[J]. 中华老年医学杂志,2014,33(3):282-285. [16] 张成宝, 余润泽, 喻德富,等. 有限元分析股骨颈骨折伴下后方不同程度骨缺损空心螺钉内固定后的稳定性[J]. 中国组织工程研究, 2020,24(18):2799-2804. [17] 张文东. 内侧支撑钢板联合空心加压螺钉治Pauwels Ⅲ型股骨颈骨折的有限元分析 [D]. 大连: 大连医科大学,2019. [18] 程培焱. 不同数量和排列方式的空心拉力螺钉治疗股骨颈骨折的有限元分析[D]. 石家庄: 河北医科大学,2017. [19] ZHOU L, LIN J, HUANG A, et al. Modified cannulated screw fixation in the treatment of Pauwels type III femoral neck fractures: A biomechanical study. Clin Biomech (Bristol, Avon). 2020;74:103-110. [20] 陈纪宝, 盈梅, 周磊, 等. 股骨颈动力交叉钉系统主钉位置对股骨颈骨折稳定性影响的有限元分析[J]. 临床骨科杂志,2023,26(5): 739-744. [21] CUI Y, XING W, PAN Z, et al. Characterization of novel intramedullary nailing method for treating femoral shaft fracture through finite element analysis. Exp Ther Med. 2020;20(2):748-753. [22] WANG J, MA JX, LU B, et al. Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthop Traumatol Surg Res. 2020;106(1):95-101. [23] 李永奖,郭孝军,白笋蓬,等. 新型内侧支撑钢板固定青壮年不稳定型股骨颈骨折的有限元分析[J]. 生物骨科材料与临床研究,2023, 20(2):6-10. [24] 姬帅,马腾,王谦,等. 股骨颈动力交叉钉系统固定PauwelsⅢ型股骨颈骨折头钉不同置入位置的有限元分析[J]. 中国骨与关节杂志,2023,12(3):210-215. [25] 韩哲,曹东东,孙翔,等. 中青年Pauwels Ⅲ型股骨颈骨折治疗的研究进展[J]. 中国中西医结合外科杂志,2023,29(5):716-719. [26] 李永旺,龙玉斌,何荣丽,等. 股骨颈动力抗旋交叉钉系统或联合空心钉治疗股骨颈骨折[J]. 中国组织工程研究,2022,26(33): 5329-5334. [27] 王俊杰, 高永泉, 宋德业, 等. 平行空心加压螺钉联合内侧支撑钢板与F型空心加压螺钉固定PauwelsⅢ型股骨颈骨折生物力学特性的有限元分析[J]. 中南大学学报(医学版),2022,47(8): 1143-1153. [28] KUNAPULI SC, SCHRAMSKI MJ, LEE AS, et al. Biomechanical analysis of augmented plate fixation for the treatment of vertical shear femoral neck fractures. J Orthop Trauma. 2015;29(3):144-150. [29] CHA YH, YOO JI, HWANG SY, et al. Biomechanical Evaluation of Internal Fixation of Pauwels Type III Femoral Neck Fractures: A Systematic Review of Various Fixation Methods. Clin Orthop Surg. 2019;11(1): 1-14. [30] LIU J, ZHANG B, YIN B, et al. Biomechanical Evaluation of the Modified Cannulated Screws Fixation of Unstable Femoral Neck Fracture with Comminuted Posteromedial Cortex. Biomed Res Int. 2019;2019: 2584151. [31] GOTFRIED Y, KOVALENKO S, FUCHS D. Nonanatomical reduction of displaced subcapital femoral fractures (Gotfried reduction). J Orthop Trauma. 2013;27(11):e254-e259. [32] COLLINGE CA, MIR H, REDDIX R. Fracture morphology of high shear angle “vertical” femoral neck fractures in young adult patients. J Orthop Trauma. 2014;28(5):270-275. [33] ZHANG S, HU S, DU S, et al. [Concept evolution and research progress of stability reconstruction for intertrochanteric fracture]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2019;33(10):1203-1209. [34] YE Y, CHEN K, TIAN K, et al. Medial buttress plate augmentation of cannulated screw fixation in vertically unstable femoral neck fractures: Surgical technique and preliminary results. Injury. 2017;48(10): 2189-2193. [35] AMINIAN A, GAO F, FEDORIW WW, et al. Vertically oriented femoral neck fractures: mechanical analysis of four fixation techniques. J Orthop Trauma. 2007;21(8):544-548. [36] 范智荣, 苏海涛, 周霖, 等. 新型股骨颈内固定系统治疗不稳定性股骨颈骨折的有限元分析[J]. 中国组织工程研究,2021,25(15): 2321-2328. [37] 顾叶, 王秋霏, 方涛, 等. 动力交叉螺钉应用于不稳定型股骨颈骨折的生物力学分析[J]. 中国组织工程研究,2023,27(22):3481-3485. [38] 谭能贤, 吴文正, 郑楚荣,等. 不同空心加压螺钉固定方式对股骨颈垂直型骨折的有限元分析[J]. 中国组织工程研究,2024,28(6): 873-878. [39] 殷浩, 周恩昌, 潘政军,等. 4枚空心钉与3枚空心钉结合支持钢板内固定治疗PauwelsⅢ型股骨颈骨折的有限元分析[J]. 中国组织工程研究,2019,23(32):5133-5137. [40] 王跃挺, 张琳袁, 龚伟华, 等. 老年转子间骨折股骨近端防旋髓内钉内固定术后骨折断端阳性支撑与阴性支撑短期疗效比较[J]. 中华骨与关节外科杂志,2021,14(3):205-209. |
[1] | Chen Huiting, Zeng Weiquan, Zhou Jianhong, Wang Jie, Zhuang Congying, Chen Peiyou, Liang Zeqian, Deng Weiming. Tail anchoring technique of vertebroplasty in treatment of osteoporotic vertebral compression fractures with intravertebral cleft: a finite element analysis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2145-2152. |
[2] | Zeng Xuan, Weng Rui, Ye Shicheng, Tang Jiadong, Mo Ling, Li Wenchao. Two lumbar rotary manipulation techniques in treating lumbar disc herniation: a finite element analysis of biomechanical differences [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2153-2161. |
[3] | Cheng Qisheng, Julaiti·Maitirouzi, Xiao Yang, Zhang Chenwei, Paerhati·Rexiti. Finite element analysis of novel variable-diameter screws in modified cortical bone trajectory of lumbar vertebrae [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2162-2171. |
[4] | Wu Hongxu, Liu Xuanyu, Wang Taoyu, Wang Shiyao, Cheng Jingyi, Zhang Mingwen, Zhang Yinxia, Liu Zhihua, Wang Xiaojie. Finite element simulation of scoliosis with muscle unit introduction: verification of correction effect under bidirectional load [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2172-2181. |
[5] | Liu Jiafu, Ren Ruxia, Liao Zhouwei, Zhou Xiali, Wu Yihong, Zhang Shaoqun. Three-dimensional finite element analysis of cervical spine biomechanical characteristics in a rat model of cervical vertigo [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2182-2190. |
[6] | Liu Wenlong, Dong Lei, Xiao Zhengzheng, Nie Yu. Finite element analysis of tibial prosthesis loosening after fixed-bearing unicompartmental knee arthroplasty for osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2191-2198. |
[7] | Zheng Wangyang, Fei Ji, Yang Di, Zhao Lang, Wang Lingli, Liu Peng, Li Haiyang. Finite element analysis of the force changes of the supraspinatus tendon and glenohumeral joint during the abduction and flexion of the humerus [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2199-2207. |
[8] | Cai Qirui, Dai Xiaowei, Zheng Xiaobin, Jian Sili, Lu Shaoping, Liu Texi, Liu Guoke, Lin Yuanfang. Mechanical effects of Long’s traction orthopedic method on cervical functional units: quantitative analysis of biomechanical model of head and neck [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2208-2216. |
[9] | Rao Jingcheng, Li Yuwan, Zheng Hongbing, Xu Zhi, Zhu Aixiang, Shi Ce, Wang Bing, Yang Chun, Kong Xiangru, Zhu Dawei. Biomechanical differences between the new proximal femoral stable intramedullary nail and traditional intramedullary nail#br# [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2217-2225. |
[10] | Chen Long, Wang Xiaozhen, Xi Jintao, Lu Qilin. Biomechanical performance of short-segment screw fixation combined with expandable polyetheretherketone vertebral body replacement in osteoporotic vertebrae [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2226-2235. |
[11] | Yan Xiangning, Chen Lei, Chen Yonghuan, Wang Chao, Li Xiaosheng. Influence of different depths and loads on knee joint mechanics and peripheral muscle force characteristics during squatting [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2236-2247. |
[12] | Zhou Daobin, Wang Kehao, Xie Yang, Ning Rende. Biomechanical characteristics of volar locking plate only versus combined dorsal mini-plate fixation of distal radius fractures with dorsal ulnar fragment [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(9): 2255-2261. |
[13] | Zheng Xuying, Hu Hongcheng, Xu Libing, Han Jianmin, Di Ping. Stress magnitude and distribution in two-piece cement-retained zirconia implants under different loading conditions and with varying internal connection shapes [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1979-1987. |
[14] | Liu Dawei, Cui Yingying, Wang Fanghui, Wang Zixuan, Chen Yuhan, Li Yourui, Zhang Ronghe. Epigallocatechin gallate-mediated bidirectional regulation of reactive oxygen species and its application in nanomaterials [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 2101-2112. |
[15] | Wu Yanting, Li Yu, Liao Jinfeng. Magnesium oxide nanoparticles regulate osteogenesis- and angiogenesis-related gene expressions to promote bone defect healing [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1885-1895. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||