Chinese Journal of Tissue Engineering Research ›› 2018, Vol. 22 ›› Issue (33): 5249-5254.doi: 10.3969/j.issn.2095-4344.0657
Wang Wei, Huang Yu-cheng, Chen Yan-hui
Revised:
2018-06-19
Online:
2018-11-28
Published:
2018-11-28
About author:
Wang Wei, Master, Attending physician, Zhengzhou People’s Hospital, Zhengzhou 450003, Henan Province, China
CLC Number:
Wang Wei, Huang Yu-cheng, Chen Yan-hui. Effects of adipose-derived mesenchymal stem cells on fibroblast proliferation in mouse scleroderma lesions and underlying mechanisms[J]. Chinese Journal of Tissue Engineering Research, 2018, 22(33): 5249-5254.
2.5 脂肪间充质干细胞对硬皮病成纤维细胞胶原合成、Ⅰ/Ⅲ型胶原蛋白表达的影响 与A组相比,B组和C组成纤维细胞中羟脯氨酸含量、Ⅰ型胶原、Ⅲ型胶原蛋白表达水平均显著降低,而D组显著增加,差异均有显著性意义(P < 0.05)。与D组相比,E组羟脯氨酸含量、Ⅰ型胶原、Ⅲ型胶原蛋白表达水平均显著降低,差异有显著性意义(P < 0.05),见图6和表3。 2.6 脂肪间充质干细胞对Wnt/β-catenin信号通路的影响 与A组相比,B组和C组成纤维细胞中Wnt2、Wnt3a、β-catenin蛋白表达水平均显著降低,而D组显著增加,差异均有显著性意义(P < 0.05)。与D组相比,E组Wnt/β-catenin信号通路相关蛋白表达水平均显著降低,差异有显著性意义(P < 0.05),见图7和表4。"
[1] 杨书琦,张慧芳,宋书林,等.系统性硬化症发病机制的研究进展[J].医学综述,2018,24(1):17-21.[2] Garret SM, Frost DB, Feghali-Bostwick C. The mighty fibroblast and its utility in scleroderma research. J Scleroderma Relat Disord. 2017;2(2):69-134. [3] 李晶冰,丁敏,牟萍,等.积雪草甙对系统性硬皮病成纤维细胞增殖、胶原蛋白合成及分泌TGF-β1的影响[J].江苏医药, 2014, 40(20):2387-2389.[4] 窦晶莉,白力,庞春艳,等.脂肪间充质干细胞对博来霉素诱导的硬皮病小鼠模型的治疗作用[J].北京大学学报(医学版), 2016,48(6): 970-976.[5] 卞媛媛,梁久龙,韩悦,等.兔自体脂肪来源干细胞对增生性瘢痕的作用研究[J].实用皮肤病学杂志,2013,6(1):3-6.[6] Marangoni RG, Varga J, Tourtellotte WG. Animal models of scleroderma: recent progress. Curr Opin Rheumatol. 2016; 28(6):561-570. [7] 王永祥,王春燕.脂多糖对皮肤成纤维细胞增殖的影响与机制[J].南昌大学学报(医学版),2017,57(3):24-26.[8] 喇文军,林孝发,蒋伟,等.不同培养基对皮肤来源的成纤维细胞增殖、衰老及胶原蛋白分泌的影响[J].中国美容医学杂志, 2017, 26(2):68-72.[9] Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582-598. [10] Sun YB, Qu X, Caruana G, et al. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation. 2016;92(3):102-107. [11] 武艳,张春雷,刘阳,等.骨髓间充质干细胞条件培养液对瘢痕成纤维细胞生物活性的影响[J].中国组织工程研究, 2014,18(7): 1009-1014.[12] 武艳.基于骨髓间充质干细胞对微环境的调控作用影响皮肤瘢痕形成的实验研究[D].天津:南开大学,2013.[13] Baig MT, Ali G, Awan SJ, et al. Serum from CCl4-induced acute rat injury model induces differentiation of ADSCs towards hepatic cells and reduces liver fibrosis. Growth Factors. 2017;35(4-5):144-160. [14] Meza-Ríos A, García-Benavides L, García-Bañuelos J, et al. Simultaneous Administration of ADSCs-Based Therapy and Gene Therapy Using Ad-huPA Reduces Experimental Liver Fibrosis. PLoS One. 2016;11(12):e0166849. [15] De Luca C, Mikhal'chik EV, Suprun MV, et al. Skin Antiageing and Systemic Redox Effects of Supplementation with Marine Collagen Peptides and Plant-Derived Antioxidants: A Single-Blind Case-Control Clinical Study. Oxid Med Cell Longev. 2016;2016:4389410. [16] Li P, Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids. 2018; 50(1):29-38. [17] Nusse R, Clevers H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169(6):985-999. [18] 施剑明,邬亚华,耿书国,等.间充质干细胞增殖、衰老及分化:Wnt信号通路经典与非经典的调控作用[J].中国组织工程研究, 2014, 18(41):6719-6724.[19] Mohammed MK, Shao C, Wang J, et al. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis. 2016;3(1):11-40. [20] Silva AK, Yi H, Hayes SH, et al. Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines: a potential role for the canonical Wnt signaling pathway. Mol Vis. 2010;16:36-45. [21] Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13(14):4042-4045. [22] Wei J, Melichian D, Komura K, et al. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma. Arthritis Rheum. 2011;63(6): 1707-1717. [23] 刘金娟,刘彤.Wnt2、Wnt3a和β-catenin在SSc患者皮损中的作用[J].南方医科大学学报,2012,32(12):1781-1786.[24] Duran F, Yildirim A, Yolbas S, et al. AB0215 Paricalcitol Inhibits WNT/β-Catenin Signaling Pathway and Ameliorates Dermal Fibrosis Bleomycin Induced Scleroderma Model: Figure 1. Annals of the Rheumatic Diseases. 2015;74(Suppl 2):963. 1-963. [25] Wei J, Fang F, Lam AP, et al. Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 2012;64(8):2734-2745. [26] Beyer C, Schramm A, Akhmetshina A, et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis. 2012;71(5):761-767. [27] Dees C, Distler JH. Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies. Exp Dermatol. 2013;22(11):710-713. [28] Li J, Dai Y, Zhu H, et al. Endometriotic mesenchymal stem cells significantly promote fibrogenesis in ovarian endometrioma through the Wnt/β-catenin pathway by paracrine production of TGF-β1 and Wnt1. Hum Reprod. 2016;31(6):1224-1235. [29] Ni W, Fang Y, Xie L, et al. Adipose-Derived Mesenchymal Stem Cells Transplantation Alleviates Renal Injury in Streptozotocin-Induced Diabetic Nephropathy. J Histochem Cytochem. 2015;63(11):842-853. [30] 李志,张梦莹,李雪琴,等.Wnt/β-catenin通路参与脂肪间充质干细胞对大鼠肾小球系膜细胞增殖的调控[J].细胞与分子免疫学杂志,2016,32(11):1486-1490. |
[1] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[2] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[3] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[4] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[5] | Wang Shiqi, Zhang Jinsheng. Effects of Chinese medicine on proliferation, differentiation and aging of bone marrow mesenchymal stem cells regulating ischemia-hypoxia microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1129-1134. |
[6] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[7] | Kong Desheng, He Jingjing, Feng Baofeng, Guo Ruiyun, Asiamah Ernest Amponsah, Lü Fei, Zhang Shuhan, Zhang Xiaolin, Ma Jun, Cui Huixian. Efficacy of mesenchymal stem cells in the spinal cord injury of large animal models: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1142-1148. |
[8] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[9] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[10] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[11] | Fan Quanbao, Luo Huina, Wang Bingyun, Chen Shengfeng, Cui Lianxu, Jiang Wenkang, Zhao Mingming, Wang Jingjing, Luo Dongzhang, Chen Zhisheng, Bai Yinshan, Liu Canying, Zhang Hui. Biological characteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1002-1007. |
[12] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[13] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[14] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[15] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||