Chinese Journal of Tissue Engineering Research ›› 2013, Vol. 17 ›› Issue (41): 7188-7198.doi: 10.3969/j.issn.2095-4344.2013.41.002
Previous Articles Next Articles
Wang Yu-xiang, Zhang Hong-qi, Guo Chao-feng, Tang Ming-xing, Liu Shao-hua, Deng Ang, Gao Qi-le, Deng Zhan-sheng, Chen Jing, Liu Jin-yang, Wu Jian-huang
Received:
2013-05-10
Revised:
2013-07-09
Online:
2013-10-08
Published:
2013-11-01
Contact:
Zhang Hong-qi, M.D., Professor, Chief physician, Doctoral supervisor, Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
zhq9996@163.com
About author:
Wang Yu-xiang☆, M.D., Physician, Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
wangyuxiang628@hotmail.com
Supported by:
Free Exploration Planning of Central South University, No. 2012QNZT122*; Major Project of Natural Science Foundation of Hunan Province, No. 12JJ2043*; National Natural Science Foundation of China, No. 81271940*; Natural Science Foundation of Hunan Province, No. 08JJ3057*; General Science and Technology Planning Project of Hunan Provincial Science and Technology Department, No. 08FJ3171*
CLC Number:
Wang Yu-xiang, Zhang Hong-qi, Guo Chao-feng, Tang Ming-xing, Liu Shao-hua, Deng Ang, Gao Qi-le, Deng Zhan-sheng, Chen Jing, Liu Jin-yang, Wu Jian-huang. Silenced estrogen receptor beta affects the expressions of osteoprotegerin and receptor activator of nuclear factor-kappa B ligand in osteoblastic MG63 cells[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(41): 7188-7198.
2.1 雌激素受体β-shRNA反转录病毒稳定感染后对MG63中雌激素受体βmRNA的沉默效果 经过阳性克隆筛选后,五六个克隆干扰效率无显著性差异,选其中一个阳性克隆做半定量RT-PCR,PCR产物经凝胶电泳,UVP凝胶成像系统拍摄成图像(其结果见图1),感染48 h时实验组雌激素受体β-shRNA3反转录病毒载体的条带表达明显弱于阴性对照组及空白对照组,阴性对照组与空白对照组之间未见明显不同。 半定量RT-PCR检测MG63细胞稳定感染后雌激素受体β mRNA的表达情况,空白对照组为1.317 4± 0.057 9,阴性对照组为1.274 1±0.029 3,雌激素受体β-shRNA-3为0.155 4±0.009 2。采用Quantity One软件进行资料分析的各组数据,经LSD检验,雌激素受体β-shRNA3干扰组中雌激素受体β基因mRNA的表达显著低于阴性对照组及空白对照组(P < 0.05),抑制率为(88.17±1.17)%,阴性对照组与空白对照组比较,差异无显著性意义(P > 0.05),见图1。"
2.2 雌激素受体β-shRNA反转录病毒稳定感染后对雌激素受体β蛋白表达的沉默效果 各组细胞的雌激素受体β、β-actin Western-blot检测产物经数码相机拍摄成像,见图2,结果显示感染48 h时雌激素受体β-shRNA-3反转录病毒载体实验组条带明显弱于阴性对照组及空白对照组,阴性对照组与空白对照组之间未见明显不同。 Western-blot检测hMG63细胞稳定感染后雌激素受体β蛋白的表达情况:空白对照组为0.938 3± 0.029 8,阴性对照组为0.912 0±0.037 9,雌激素受体β-shRNA3为0.103 4±0.014 9。采用Quantity One软件进行资料分析的各组数据,经LSD检验,雌激素受体β-shRNA-3干扰组中雌激素受体β蛋白表达显著低于阴性对照组及空白对照组,差异有显著性意义(P < 0.05),抑制率为(89.01±1.22)%。阴性对照组与空白对照组相比,差异无显著性意义(P > 0.05)。"
2.4 RNAi基因敲低雌激素受体β亚型后对骨保护素和RANKL mRNA表达的影响 采用Quantity One软件进行资料分析的各组数据,经LSD检验,雌激素受体βshRNA3干扰组MG63细胞中骨保护素基因mRNA的表达相对于阴性对照组及空白对照组上调,其上调率(15.51±1.72)%(P < 0.05),阴性对照组与空白对照组相比,差异无显著性意义(P > 0.05),见表2。 同法,结果显示雌激素受体β shRNA3干扰组MG63细胞中RANKL基因mRNA的表达相对于阴性对照组及空白对照组下调,其下调率为(22.17±0.94)% (P < 0.05)。阴性对照组与空白对照组相比,差异无显著性意义(P > 0.05);雌激素受体βshRNA3干扰组中MG63细胞骨保护素/RANKL表达比率相对于阴性对照组及空白对照组升高(LSD检验,P < 0.05) 阴性对照组与空白对照组比较,差异无显著性意义(P > 0.05)。"
采用Quantity One软件进行资料分析的各组数据,经LSD检验,雌激素受体βshRNA3干扰组MG63细胞中骨保护素基因蛋白表达相比于阴性对照组及空白对照组上调,其上调率为(20.35±1.15)%(P < 0.05),雌激素受体βshRNA3干扰组MG63细胞中RANKL基因蛋白表达相比于阴性对照组及空白对照组下调,其下调率为(27.22±1.48)%(P < 0.05)。阴性对照组与空白对照组相比,差异无显著性意义(LSD检验,P > 0.05);雌激素受体βshRNA3干扰组MG63细胞中骨保护素/RANKL表达比率相比于阴性对照组及空白对照组升高了(LSD检验,P < 0.05),见表3,图13。"
[1] Natalie A.S,Philippe CL,Do minique Minet,et al.A functional androgen receptor is not sufficient to allow estradiol to protect bone afIergonadectomyin estradiol receptor-feflcient mice.The Journal of Clinical Investigation.2003;111(9): 1319-1327.
[2] Lindberg MK,Weihua Z,Anderssons N,et al.Estrogen receptor specificity for the effects of estrogen in ovarictomized mice. J Endocrinol.2002;174(2):167-178.
[3] 王昱翔,张宏其,郭超峰,等.人雌激素β受体RNAi反转录病毒载体在人成骨样MG63细胞中的表达[J].中国组织工程研究,2012, 16(42):7830-7836.
[4] Suh KT,Lee SS,Hwang SH,et al.Elevated soluble receptor activator of nuclear factor -kappaB ligand and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J.2007;16(10):1563-1569.
[5] 刘臻,邱勇,孙强,等.RANKL/OPG 在青少年特发性脊柱侧凸患者低骨量发生机制中的作用[J].中国骨质疏松杂志,2007,13(7): 474-479.
[6] 殷刚,邱勇,黄爱兵,等.青少年特发性脊柱侧凸患者成骨细胞中核因子κB受体活化子配体和骨保护蛋白的表达[J].中国脊柱脊髓杂志,2009,19(3):216-221.
[7] Yasuda H.Bone and bone related biochemical examinations.Bone and coUagen related metabolites. Receptor activator of NF-kappaB ligand (RANKL).Clin Calcium. 2006; 16(6):964-970.
[8] 刘继中,纪宗玲,陈苏民.OPG/RANKL/RANK系统与骨破坏性疾病[J].生物工程学报, 2003,19(6):655-659.
[9] LindbergMK, Moverare S, Skrtie S, et al.Estrogen receptor (ER)-β reduce ER-α-regulated gene transcription.supporting a”Ying Yang”relationship between ERα and ERβ in mice.Mol Endocrinol.2003;17(2):203-208.
[10] Chen FP,Hsu T,Hu CH,et al.Expression of estrogen receptors alpha and beta in human osteoblasts: identification of exon 2 deletion variant of estrogen receptor beta in postmenopausal women.Chang Gung Med J.2004; 27(2):107-115.
[11] Williams FM,Spector TD.The genetics of osteoporosis.Acta Reumatol Port. 2007;32(3):231-240.
[12] Wiren KM, Chapman EA, Zhang XW.Osteoblast differentiation influences androgen and estrogen receptor alpha and beta expression.J Endocrinol.2002;175(3): 683-694.
[13] Braidman IP, Hainey L, Batra G, et al.Localization of estrogen receptor beta protein expression in adult human bone.J Bone Miner Res. 2001;16(2):214-220.
[14] Windahl SH, Norgard M, Kuiper GG,et al.Cellular Distribution of Estrogen Receptor β in Neonatal Rat bone.Bone.2000; 26(2):117-121.
[15] Vidal O,Kindblom IG,Ohlsson C.Expression and localization of estrogen receptor-beta in murine and human bone.J Bone Miner Res.1999;14(6):923-929.
[16] Lindberg MK, Weihua Z, Anderssons N, et al.Estrogen receptor specificity for the effects of estrogen in ovarictomized mice.J Endocrinol.2002;174(2):167-178.
[17] Sims NA,Clement-Lacroix P,Minet D,et al.A functional androgen receptor is not sufficeint to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J Clin Invest.2003;111(9):1319-1327.
[18] H.Z.Ke,T.A.Brown,H.Qi,et al.The role of estrogen receptor-β‚ in the early age-related bone gain and later age-related bone loss in female mice.J Musculoskel Neuron Interact.2002; 2(5): 479-488.
[19] Ke HZ.In vivo characterization of skeletal phenotype of genetically modified mice.J Bone Miner Metab.2005;23: 84-89.
[20] Chen X, Chen F, Liu S, et al.Transactivation of rat apical sodium-dependent bile acid transporter and increased bileacid transport by 1alpha, 25- dihydroxyvitamin D3 via the vitamin D receptor (VDR).Mol Pharmacol.2006;69(6): 1913-1923.
[21] Kanikarla-Marie P, Ronald S, De Benedetti A. Nucleosome resection at a double-strand break during Non-Homologous Ends Joining in mammalian cells - implications from repressive chromatin organization and the role of ARTEMIS. BMC Res Notes. 2011;4:13.
[22] Li L,Ji FY,Yan W,et al.Estrogen Regulates Expression of Osteoprotegerin and RANKL in Human Periodontal Ligament Cells Through Estrogen Receptor Beta.J Periodontol.2008; 79(9):1745-1751.
[23] Trouvin AP, Goëb V.Receptor activator of nuclear factor-κB ligand and osteoprotegerin:maintaining the balance to prevent bone loss.Clin Interv Aging. 2010,19;5:345-54
[24] Roshandel D, Holliday KL, Pye SR,et al. Genetic variation in the RANKL/ RANK/OPG signaling pathway is associated with bone turnover and bone mineral density in men.J Bone Miner Res.2010;25(8):1830-1838.
[25] Kostenuik PJ.Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength.Curr Opin Phammcol. 2005;5(6):618-625.
[26] 付应霄,顾建红,赵鸿雁,等. 骨保护素对破骨细胞活性的影响[J]. 中国兽医学报,2013,33(5):738-741.
[27] Yasuda H.Bone and bone related biochemical examinations.Bone and collagen related metabolites, Receptor activator of NF-kappaB ligand (RANKL).Clin Calcium. 2006;16(6):964-970.
[28] Murthy RK, Morrow PK, Theriault RL. Bone biology and the role of the RANK ligand pathway.Oncology (Williston Park). 2009;23(14 Suppl 5):9-15.
[29] Leibbrandt A, Penninger JM.RANK(L) as a key target for controlling bone loss.Adv Exp Med Biol.2009;647:130-145.
[30] 王琰,刘超,宋仁纲,等. RANK/RANKL/OPG信号通路的研究进展[J]. 医学综述,2013,19(7):1166-1168.
[31] 黄斌,秦汉兴,张新颖,等. 类风湿关节炎患者OPG、瘦素表达水平与骨质疏松相关性研究[J].海南医学院学报,2013,19(4): 517-520.
[32] Eriksen EF.Cellular mechanisms of bone remodeling.Rev Endocr Metab Disord. 2010;11(4):219-227.
[33] Trouvin AP, Goëb V. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging. 2010;5:345-354.
[34] Pivonka P, Zimak J, Smith DW,et al.Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling.J Theor Biol.2010;262(2):306-316.
[35] Hyun JJ, Chun HJ, Keum B,et al. Effect of omeprazole on the expression of transcription factors in osteoclasts and osteoblasts.Int J Mol Med.2010;26(6): 877-883.
[36] Hong YJ, Chun JS, Lee WK. Association of collagen with calcium phosphate promoted osteogenic responses of osteoblast-like MG63 cells. Colloids Surf B Biointerfaces. 2011;83(2):245-253.
[37] Trouvin AP, Goëb V. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging. 2010;5:345-354. |
[1] | Li Shengkai, Li Tao, Wei Chao, Shi Ming. Comparison of biomechanical properties of calcium phosphate/polymethyl methacrylate composite bone cement and polymethyl methacrylate bone cement [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2581-2586. |
[2] | Yang Xue, Wang Baoqun, Jiang Xiaowen, Zou Shengcan, Ming Jinfa, Lin Shasha. Preparation and properties of biodegradable plant polysaccharide hemostatic microspheres [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2607-2611. |
[3] | Liu Jiali, Suo Hairui, Yang Han, Wang Ling, Xu Mingen. Influence of lay-down angles on mechanical properties of three-dimensional printed polycaprolactone scaffolds [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2612-2617. |
[4] | Liu Xiaojun, Xu Yuyin, Liu Kangbo, Zhou Jing, Han Ying, Xiong Yue, Tian Yuan. Preparation and properties of carboxymethylated cotton linters hemostatic gauze [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2593-2599. |
[5] | Huang Bo, Chen Mingxue, Peng Liqing, Luo Xujiang, Li Huo, Wang Hao, Tian Qinyu, Lu Xiaobo, Liu Shuyun, Guo Quanyi . Fabrication and biocompatibility of injectable gelatin-methacryloyl/cartilage-derived matrix particles composite hydrogel scaffold [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2600-2606. |
[6] | Luo Di, Liang Xuezhen, Liu Jinbao, Li Jiacheng, Yan Bozhao, Xu Bo, Li Gang. Difference in osteogenesis- and angiogenesis-related protein expression in femoral head samples from patients with femoral head necrosis of different etiologies [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1641-1647. |
[7] | Zhu Chunhui, Zhang Yi, Song Huanghe, Liang Wenwei. Protective effect of astaxanthin on tert-butyl hydrogen peroxide-induced chondrocyte damage [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1648-1655. |
[8] | Zhao Tianyu, Jin Song, Zhang Di, Liu Xiaoxiao, Ma Jiang, Wang Ju. Baduanjin training for patellar tendinopathy in a randomized controlled trial: improving pain, muscle flexibility and lower limb balance stability [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1662-1668. |
[9] | Zhang Lei, Xiu Chunmei, Ni Li, Chen Jianquan. Identification and expression analysis of mouse nucleus pulposus specific markers [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1669-1674. |
[10] | Yu Dong, Liu Kan, Shi Zongting, Yang Xiaoxia, Liu Hengping, Zhang Qingfeng. Pathological changes of the cervical intervertebral discs and rules of migration and apoptosis in endplate chondrocytes in a rabbit model of dynamic disequilibrium [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1675-1679. |
[11] | Tian Zhuang, Wang Diaodiao, Zhang Chu, Li Hanchen, Zhou Jian, Yao Qi. The mechanism by which bone morphogenetic protein 2 indirectly regulates sclerostin expression in osteocytes [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1686-1691. |
[12] | Li Jingyu, Su Yingying, Bai Ding. Morphological characteristics of subchondral bone in a mouse model of early osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1692-1698. |
[13] | Bao Hongyu Lü Dongmei, He Yun, Xia Delin, Chen Junliang. Incidence of osteonecrosis in rats with jaw versus femoral defects following zoledronic acid injection [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1699-1704. |
[14] | Tan Qian, Li Bocun, Li Jing, Li Jia, Xiang Hongchun, Cai Guowei. Acupuncture combined with moxibustion regulates the expression of circadian clock protein in the synovium of rats with osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1714-1719. |
[15] | Fei Jing, Tao Meihui, Li Leiji. Electroacupuncture promotes facial nerve regeneration in a rat model of facial nerve crush [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(11): 1728-1733. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||