Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (28): 4498-4504.doi: 10.12307/2024.459
Previous Articles Next Articles
Ma Yunfeng1, Han Xiaofei2
Received:
2023-05-21
Accepted:
2023-08-16
Online:
2024-10-08
Published:
2023-11-27
Contact:
Ma Yunfeng, Department of Osteopathy, Second Affiliated Hospital of Henan University of Chinese Medicine (Henan Province Hospital of Traditional Chinese Medicine), Zhengzhou 450002, Henan Province, China
About author:
Ma Yunfeng, Master, Physician, Department of Osteopathy, Second Affiliated Hospital of Henan University of Chinese Medicine (Henan Province Hospital of Traditional Chinese Medicine), Zhengzhou 450002, Henan Province, China
Supported by:
CLC Number:
Ma Yunfeng, Han Xiaofei. Eriodictyol accelerates glucocorticoid-induced apoptosis by promoting osteoblast autophagy[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(28): 4498-4504.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 低浓度圣草素对成骨细胞无毒性,且促进成骨细胞增殖 使用CCK-8测量细胞活力,以检查圣草素是否对成骨细胞活性具有影响,并在体外找到最合适的处理浓度。使用不同浓度的圣草素(0,0.5,1,2.5,5和10 μmol/L)处理MC3T3‐E1细胞48 h,初步筛选最佳浓度。结果显示,低浓度的圣草素对MC3T3‐E1细胞无毒性,且10 μmol/L的圣草素促进MC3T3‐E1细胞增殖(P < 0.05,图1A)。接下来,使用不同浓度的圣草素(0,0.5,1,2.5,5和10 μmol/L)干预地塞米松处理的MC3T3‐E1细胞,结果显示地塞米松处理后MC3T3‐E1细胞的活性显著降低(P < 0.01),而2.5 μmol/L的圣草素干预升高MC3T3‐E1细胞活性(P < 0.05),5 μmol/L和10 μmol/L圣草素对地塞米松处理的MC3T3-E1细胞活性的促进作用更明显(P < 0.01,图1B)。以上结果提示,低浓度的圣草素对成骨细胞MC3T3-E1无毒性,且促进细胞增殖。"
2.2 圣草素减轻地塞米松处理成骨细胞中Caspase依赖性细胞凋亡 细胞凋亡分析显示,圣草素以剂量依赖的方式降低地塞米松诱导的成骨细胞MC3T3-E1凋亡(P < 0.05,图2A,B)。Caspase的级联激活触发细胞凋亡,因此通过ELISA试剂盒检测MC3T3-E1细胞中Caspase-3(细胞凋亡途径中的主要Caspase)的活性。结果显示,地塞米松处理可显著升高MC3T3-E1细胞中Caspase-3的活性,而圣草素处理以剂量依赖性的方式抑制Caspase-3的活性(P < 0.05,图2C)。与此同时,Western blot结果显示,地塞米松可显著促进凋亡蛋白Bax的表达(P < 0.05),抑制抗凋亡蛋白Bcl-2的表达(P < 0.05);而圣草素逆转了地塞米松对MC3T3-E1细胞中凋亡蛋白和抗凋亡蛋白表达的影响(图2D-F)。这些结果表明圣草素抑制地塞米松诱导的成骨细胞Caspase依赖性凋亡。"
2.3 圣草素通过促进地塞米松处理的成骨细胞的自噬抑制细胞凋亡 为了探索圣草素抑制成骨细胞凋亡的潜在机制,通过Western blot分析了MC3T3-E1细胞中的自噬水平。结果显示地塞米松处理显著减低MC3T3-E1细胞中的LC3-Ⅱ/LC3-Ⅰ比率,抑制自噬相关蛋白p62、Atg5和Atg12的表达(P < 0.01)。圣草素以剂量依赖性升高细胞中的LC3-Ⅱ/LC3-Ⅰ比率,促进p62、Atg5和Atg12的蛋白表达(P < 0.05,图3A-E)。这些结果表明,圣草素在地塞米松处理的成骨细胞中激活了自噬。此外,自噬抑制剂3-MA的加入显著逆转了圣草素对地塞米松诱导的成骨细胞中Caspase-3活性和细胞凋亡的抑制作用(P < 0.05,图3F-H)。"
2.5 HMOX1通过激活AMPK信号通路抑制成骨细胞凋亡 为了探究HMOX1对成骨细胞的影响,用HMOX1的过表达载体和空载体转染地塞米松诱导的MC3T3‐E1细胞,观察细胞的凋亡情况。流式细胞术分析显示过表达HMOX1显著抑制地塞米松诱导的MC3T3-E1细胞凋亡(P < 0.01,图5A)。ELISA试剂盒分析显示过表达HMOX1显著减低地塞米松诱导的MC3T3-E1细胞中的Caspase-3活性(P < 0.01,图5B)。Western blot分析显示过表达HMOX1显著减少Bax的蛋白表达,促进Bcl-2的表达(P < 0.01,图5C-E)。除此之外,Western blot分析结果还显示过表达HMOX1显著促进AMPK的磷酸化(P < 0.01,图5F)。以上结果表明HMOX1通过激活AMPK信号通路抑制地塞米松诱导的成骨细胞凋亡。"
2.6 HMOX1通过诱导自噬激活抑制成骨细胞凋亡 为了阐明HMOX1是否通过自噬保护抑制成骨细胞凋亡,使用了自噬抑制剂3-MA干预MC3T3-E1细胞。Western blot结果显示过表达HMOX1显著升高MC3T3-E1细胞中的LC3-Ⅱ/LC3-Ⅰ比率,促进自噬相关蛋白p62的表达(P < 0.01),而3-MA干预减低LC3-Ⅱ/LC3-Ⅰ比率,抑制p62的表达(P < 0.01,图6A-C)。此外,过表达HMOX1显著抑制MC3T3-E1细胞中凋亡蛋白Bax的表达(P < 0.01),促进抗凋亡蛋白Bcl-2的表达(P < 0.01),而3-MA抵消了HMOX1过表达对Bax和Bcl-2蛋白表达的影响(P > 0.05),见图6D,E。ELISA试剂盒检测结果显示过表达HMOX1显著减低MC3T3-E1细胞中Caspase-3活性(P < 0.01),而3-MA升高Caspas-3活性(图6F)。流式细胞术分析显示过表达HMOX1显著抑制MC3T3-E1细胞凋亡(P < 0.01),而3-MA逆转了HMOX1过表达对MC3T3-E1细胞凋亡的影响(P < 0.05,图6G)。这些结果表明,HMOX1通过激活自噬抑制地塞米松诱导的成骨细胞凋亡。"
[1] GOPINATH V. Osteoporosis. Med Clin North Am. 2023;107(2):213-225. [2] SNODGRASS P, ZOU A, GRUNTMANIS U, et al. Osteoporosis Diagnosis, Management, and Referral Practice After Fragility Fractures. Curr Osteoporos Rep. 2022;20(3):163-169. [3] AIBAR-ALMAZáN A, VOLTES-MARTíNEZ A, CASTELLOTE-CABALLERO Y, et al. Current Status of the Diagnosis and Management of Osteoporosis. Int J Mol Sci. 2022;23(16):9465. [4] SRIVASTAVA RK, SAPRA L,MISHRA PK. Osteometabolism: Metabolic Alterations in Bone Pathologies. Cells. 2022;11(23):3943. [5] LIANG B, BURLEY G, LIN S, et al. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett. 2022; 27(1):72. [6] PATEL D, WAIRKAR S. Bone regeneration in osteoporosis: opportunities and challenges. Drug Deliv Transl Res. 2023;13(2):419-432. [7] LAURENT MR, GOEMAERE S, VERROKEN C, et al. Prevention and Treatment of Glucocorticoid-Induced Osteoporosis in Adults: Consensus Recommendations From the Belgian Bone Club. Front Endocrinol (Lausanne). 2022;13:908727. [8] URQUIAGA M,SAAG KG. Risk for osteoporosis and fracture with glucocorticoids. Best Pract Res Clin Rheumatol. 2022; 36(3): 101793. [9] CHEN M, FU W, XU H, et al. Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine Growth Factor Rev. 2023;70:54-66. [10] VARGAS JNS, HAMASAKI M, KAWABATA T, et al. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 2023; 24(3):167-185. [11] ZHU C, SHEN S, ZHANG S, et al. Autophagy in Bone Remodeling: A Regulator of Oxidative Stress. Front Endocrinol (Lausanne). 2022;13: 898634. [12] WANG J, ZHANG Y, CAO J, et al. The role of autophagy in bone metabolism and clinical significance. Autophagy. 2023;19(9):2409-2427. [13] YAO L, LIU W, BASHIR M, et al. Eriocitrin: A review of pharmacological effects. Biomed Pharmacother. 2022;154:113563. [14] DENG Z, HASSAN S, RAFIQ M, et al. Pharmacological Activity of Eriodictyol: The Major Natural Polyphenolic Flavanone. Evid Based Complement Alternat Med. 2020;2020:6681352. [15] SONG F, ZHOU L, ZHAO J, et al. Eriodictyol Inhibits RANKL-Induced Osteoclast Formation and Function Via Inhibition of NFATc1 Activity. J Cell Physiol. 2016;231(9):1983-1993. [16] SFEIR JG, DRAKE MT, KHOSLA S, et al. Skeletal Aging. Mayo Clin Proc. 2022;97(6):1194-1208. [17] PLUSKIEWICZ W, ADAMCZYK P,DROZDZOWSKA B. Glucocorticoids Increase Fracture Risk and Fracture Prevalence Independently from Bone Mineral Density and Clinical Risk Factors: Results from the Gliwice Osteoporosis (GO) Study. Horm Metab Res. 2022;54(1):20-24. [18] HUANG J, YE Y, XIAO Y, et al. Geniposide ameliorates glucocorticoid-induced osteoblast apoptosis by activating autophagy. Biomed Pharmacother. 2022;155:113829. [19] ISLAM A, ISLAM MS, RAHMAN MK, et al. The pharmacological and biological roles of eriodictyol. Arch Pharm Res. 2020;43(6):582-592. [20] LI L, LI WJ, ZHENG XR, et al. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol Med. 2022;28(1):11. [21] SHAN H, ZHANG X, MI Y, et al. Eriodictyol Suppresses Gastric Cancer Cells via Inhibition of PI3K/AKT Pathway. Pharmaceuticals (Basel). 2022; 15(12):1477. [22] NISAR MF, LIU T, WANG M, et al. Eriodictyol protects skin cells from UVA irradiation-induced photodamage by inhibition of the MAPK signaling pathway. J Photochem Photobiol B. 2022;226:112350. [23] GUO YF, SU T, YANG M, et al. The role of autophagy in bone homeostasis. J Cell Physiol. 2021;236(6):4152-4173. [24] TROJANI MC, SANTUCCI-DARMANIN S, BREUIL V, et al. Autophagy and bone diseases. Joint Bone Spine. 2022;89(3):105301. [25] HUANG J, YE Y, XIAO Y, et al. Geniposide ameliorates glucocorticoid-induced osteoblast apoptosis by activating autophagy. Biomed Pharmacother. 2022;155:113829. [26] CAO L, ZHOU S, QIU X, et al. Trehalose improves palmitic acid-induced apoptosis of osteoblasts by regulating SIRT3-medicated autophagy via the AMPK/mTOR/ULK1 pathway. Faseb J. 2022;36(9):e22491. [27] VIDONI C, FERRARESI A, SECOMANDI E, et al. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells. Cell Commun Signal. 2019;17(1):98. [28] CHENG CH, CHEN LR,CHEN KH. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int J Mol Sci. 2022;23(3): 1376. [29] ZHANG P, LIAO J, WANG X, et al. High glucose promotes apoptosis and autophagy of MC3T3-E1 osteoblasts. Arch Med Sci. 2023;19(1):138-150. [30] CHE J, YANG J, ZHAO B, et al. HO-1: A new potential therapeutic target to combat osteoporosis. Eur J Pharmacol. 2021;906:174219. [31] LIN TH, TANG CH, HUNG SY, et al. Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J Cell Physiol. 2010;222(3):757-768. [32] GE Y, ZHOU M, CHEN C, et al. Role of AMPK mediated pathways in autophagy and aging. Biochimie. 2022;195:100-113. [33] GUO X,LIANG M. Metformin alleviates dexamethasone-induced apoptosis by regulating autophagy via AMPK/mTOR/p70S6K in osteoblasts. Exp Cell Res. 2022;415(1):113120. |
[1] | Li Lisi, Zhang Chengdong, Li Xiaolong, Ye Ziyu, Pu Chao, Yang Zaijun, Shi Feng, Xiao Dongqin. Growth differentiation factor-5 modified by bisphosphonate promotes osteogenic differentiation of MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 373-379. |
[2] | Han Yue, Wang Yufei, Liu Wanqing, Dong Ming, Niu Weidong. Effects of icariin on proliferation and differentiation of MC3T3-E1 cells in an inflammatory environment [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(23): 3709-3714. |
[3] | Li Mengdi, Li Na, Guo Minfang, Meng Tao, Yu Jingwen, Li Yanbing, Ma Cungen, Yu Jiezhong. Eriodictyol improves cognitive function of 5×FAD mice by regulating Nogo-A/NgR/ROCK2 signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(32): 5097-5102. |
[4] | Yang Huixia, Bai Zhigang, Chi Hongyang, Ma Tianlong, Ma Shengchao, Jiang Yideng. Effects of long non-coding RNA H19 on apoptosis of osteoblasts induced by dexamethasone [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(28): 4513-4518. |
[5] | Guo Pengda, Liu Keke, Duan Xin, Liu Zhaohui, Zhang Yuntao. Terpinen-4-ol with antibacterial properties promotes osteogenic differentiation of MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(25): 4006-4012. |
[6] | Jiang Yifan, Geng Yu, Zhang Xin, Zuo Zhongfu. Mechanism of dexamethasone against high glucose-induced oxidative damage to glomerular podocytes [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(24): 3852-3857. |
[7] | Wang Lei, Bai Xuesong, Du Yu, He Aimin, Zheng Jun, Zhang Zhipeng, Lyu Huicheng. Significance of miR-27b/peroxisome proliferators-activated receptor gamma 2 axis for proliferation and osteoblast differentiation of mouse embryonic osteogenic precursor cells [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(11): 1780-1786. |
[8] | Lan Qian, Gu Yangcong, Xiao Xin, Bi Xueting, Li Na. Human periodontal ligament stem cells-derived exosomes interfere with the proliferation and differentiation of MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 54-58. |
[9] | Yang Sidi, Wang Qian, Xu Nuo, Wang Ronghan, Jin Chuanqi, Lu Ying, Dong Ming. Biodentine enhances the proliferation and differentiation of osteoblasts through upregulating bone morphogenetic protein-2 [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 516-520. |
[10] | Wang Zhenheng, Wang Zhidong, Liu Naicheng, Chen Guangdong, Gao Maofeng, Shi Weidong, Zhu Ruofu. Effect of intravenous dexamethasone preoperatively on pain and complications after unicondylar arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(33): 5297-5302. |
[11] | Song Wei, Zhang Yaxin, Jia Dazhou, Sun Yu. Adjective application of dexamethasone combined with furosemide for early pain and swelling after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(33): 5317-5322. |
[12] | Wang Xue, Liu Yang, Xu Jianfeng, Long Qianfa, Wang Tong, Zhong Jun. Neuroprotective effect of umbilical cord mesenchymal stem cell-derived exosomes on hippocampal neurons in mice with intracerebral hemorrhage [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(31): 4928-4934. |
[13] | Li Suyao, Guo Minfang, Yu Jingwen, Meng Tao, Mu Bingtao, Li Mengdi, Li Na, Song Lijuan, Ma Cungen, Yu Jiezhong. Effect of eriodictyol on the imbalance of mitochondrial dynamics and apoptosis in SH-SY5Y cells induced by hydrogen peroxide [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(31): 4975-4981. |
[14] | Song Jianzhi, Xu Lisen, Zhang Chen, Tu Feng, Niu Fei. Mechanism by which SC79, an Akt activator, inhibits dexamethasone-induced apoptosis and programmed necrosis of osteoblasts [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(29): 4699-4703. |
[15] | Wang Jinsi, Wang Shengfa, Wu Zhuguo, He Xiaoling, Wang Xinyu, Luo Xiaoyu, Zhao Yi, Zhang Jingying. Design and biological activity of beta-tricalcium phosphate biomimetic bone scaffold based on triply periodic minimal surfaces [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(21): 3291-3297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||