中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (14): 3597-3608.doi: 10.12307/2026.657

• 纳米生物材料 nanobiomaterials • 上一篇    

硬模板构建纳米β-磷酸三钙和纳米羟基磷灰石根管封闭材料

李  倩1,2,曲曼姑丽•阿布都克力木1,2,邵子瑜1,2,胡  杨1,2    

  1. 1新疆医科大学第一附属医院(附属口腔医院)口腔修复种植科,新疆维吾尔自治区乌鲁木齐市  830054;2新疆维吾尔自治区口腔医学研究所,新疆维吾尔自治区乌鲁木齐市  830054
  • 收稿日期:2025-07-04 接受日期:2025-07-22 出版日期:2026-05-18 发布日期:2025-09-10
  • 通讯作者: 胡杨,副主任医师,副教授,新疆医科大学第一附属医院(附属口腔医院)口腔修复种植科,新疆维吾尔自治区乌鲁木齐市 830054;新疆维吾尔自治区口腔医学研究所,新疆维吾尔自治区乌鲁木齐市 830054
  • 作者简介:李倩,女,1997年生,汉族,医学硕士,医师,主要从事口腔修复学研究。
  • 基金资助:
    新疆维吾尔自治区重点研发任务专项(2016B03049-2),项目负责人:胡杨;上海宝山区卫生健康委员会科研课题计划任务书[BSZK-2023-BP02(01)],项目参与人:胡杨

Hard template construction of nano-beta-tricalcium phosphate and nano-hydroxyapatite root canal sealing materials

Li Qian1, 2, Qumanguli · Abudukelimu1, 2, Shao Ziyu1, 2, Hu Yang1, 2   

  1. 1Xinjiang Uygur Autonomous Region, China; 2Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
  • Received:2025-07-04 Accepted:2025-07-22 Online:2026-05-18 Published:2025-09-10
  • Contact: Hu Yang, Associate chief physician, Associate professor, Department of Prosthodontics and Implantology, First Affiliated Hospital (Affiliated Stomatological Hospital) of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
  • About author:Li Qian, MS, Physician, Department of Prosthodontics and Implantology, First Affiliated Hospital (Affiliated Stomatological Hospital) of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
  • Supported by:
    Xinjiang Uygur Autonomous Region Key Research & Development Task Special Project, No. 2016B03049-2 (to HY); Shanghai Baoshan District Health Commission Scientific Research Project Plan Task Book, No. BSZK-2023-BP02(01) (to HY)

摘要:

文题释义:
纳米β-磷酸三钙:是一种生物活性陶瓷材料,主要成分包括钙和磷,具有良好的生物相容性和生物降解性。纳米β-磷酸三钙可与骨组织结合和降解并促进骨细胞的生长和再生,可作为骨填充材料和植入物,在骨科、牙科修复和再生领域研究前景广阔。
硬模板法:采用比较坚硬的固体材料作为模板剂,将前驱物填充到硬模板孔道中或吸附在硬模板剂表面,制约前驱物的晶化或聚合,最后通过合适的方法除去模板物质,即可形成具有介孔结构的纳米材料。

背景:现阶段根管封闭剂多存在生物相容性、机械力学性能和降解性不佳的缺点,纳米β-磷酸三钙和纳米羟基磷灰石具有较好的生物相容性能、降解性和封闭性,在根管封闭剂领域有重要研究价值。
目的:以牙本质片硬模板调控纳米β-磷酸三钙和纳米羟基磷灰石材料晶体的成核、生长及重构,构建微观形态和三维结构与牙体硬组织结构类似的新型根管封闭材料。
方法:收集因智齿阻生而拔除的废弃第三磨牙30颗,制备牙本质片。将不同质量的纳米β-磷酸三钙(或纳米羟基磷灰石)分别溶于蒸馏水中,将溶液倒入含有牙本质片的培养皿中,置于37 ℃恒温培养箱中12 h,得到10%,20%,30%纳米β-磷酸三钙/牙本质片和10%,20%,30%纳米羟基磷灰石/牙本质片,以单纯的纳米β-磷酸三钙、纳米羟基磷灰石为对照。通过扫描电子显微镜、拉曼光谱、X射线衍射仪和X射线光电子能谱技术对8组样本进行表征和分析。
结果与结论:①扫描电子显微镜:在牙本质片的调控下,纳米β-磷酸三钙和纳米羟基磷灰石的微观结构和形貌特征均发生了改变,纳米β-磷酸三钙颗粒形态由不规则多边形变为短棒状、球状,排列成三维团簇状,纳米羟基磷灰石颗粒形态由棒状、针状变为短棒状等多种形态;纳米β-磷酸三钙和纳米羟基磷灰石颗粒有序地排列在牙本质胶原纤维网络之间,并且随着纳米β-磷酸三钙或纳米羟基磷灰石浓度的增加,附着及团聚现象越来越明显,排列越来越紧密。②拉曼光谱:在牙本质片的调控作用下,纳米β-磷酸三钙和纳米羟基磷灰石的官能团未发生改变,但是随着纳米β-磷酸三钙或纳米羟基磷灰石浓度的增加,官能团特征峰的强度增强。③X射线衍射:在牙本质片的调控作用下,纳米β-磷酸三钙和纳米羟基磷灰石的结晶度提升,晶体结构更完整,晶粒变小,其中30%纳米β-磷酸三钙/牙本质片和30%纳米羟基磷灰石/牙本质片的结晶性最好。④X射线光电子能谱:在牙本质片的调控作用下,纳米β-磷酸三钙和纳米羟基磷灰石的元素组成未变,但出现部分化学态变化以及特征峰强度增强特征。⑤结果表明,以牙本质片为硬模板构建的纳米β-磷酸三钙或纳米羟基磷灰石复合材料表征性能稳定,牙本质片对纳米β-磷酸三钙和纳米羟基磷灰石具有一定的调控功能,其中30%纳米β-磷酸三钙/牙本质片、30%纳米羟基磷灰石/牙本质片表征性能更为优异。
https://orcid.org/0009-0001-9965-0059(李倩)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 纳米β-磷酸三钙">, 纳米羟基磷灰石">, 硬模板">, 牙本质片">, 表征性能">, 晶体">, 微观形貌">, 分子结构

Abstract: BACKGROUND: At present, root canal sealants have the shortcomings of poor biocompatibility, mechanical properties, and degradation, and nano-β-tricalcium phosphate and nano-hydroxyapatite materials have good biocompatibility, degradability, and sealability, and have important research value in the field of root canal sealants.
OBJECTIVE: To construct new root canal sealing material with microscopic morphology and three-dimensional structure similar to the hard tissue structure of the tooth by controlling the nucleation, growth, and reconstruction of nano-β-tricalcium phosphate and nano-hydroxyapatite crystals by the dentin sheet hard template method
METHODS: Totally 30 discarded third molars extracted due to impacted wisdom teeth were collected and dentin slices were prepared. Different masses of nano-β-tricalcium phosphate (or nano-hydroxyapatite) were dissolved in distilled water, and the solution was poured into a culture dish containing a dentin slice and placed in a 37°C constant temperature incubator for 12 hours to obtain 10%, 20%, and 30% nano-β-tricalcium phosphate/dentin slices and 10%, 20%, and 30% nano-hydroxyapatite/dentin slices, with pure nano-β-tricalcium phosphate and nano-hydroxyapatite as controls. The eight groups of samples were characterized and analyzed by scanning electron microscopy, Raman spectroscopy, X-ray diffractometer, and X-ray photoelectron spectroscopy.
RESULTS AND CONCLUSION: (1) Scanning electron microscopy: Under the regulation of dentin slices, the microstructure and morphology of nano-β-tricalcium phosphate and nano-hydroxyapatite changed. The morphology of nano-β-tricalcium phosphate particles changed from irregular polygons to short rods and spheres, arranged in three-dimensional clusters, and the morphology of nano-hydroxyapatite particles changed from rods and needles to short rods and other forms. Nano-β-tricalcium phosphate and nano-hydroxyapatite particles were orderly arranged between the dentin collagen fiber network, and with the increase of nano-β-tricalcium phosphate or nano-hydroxyapatite concentration, the adhesion and agglomeration phenomenon became more and more obvious, and the arrangement became more and more dense. (2) Raman spectroscopy: Under the regulation of dentin slices, the functional groups of nano-β-tricalcium phosphate and nano-hydroxyapatite did not change, but with the increase of nano-β-tricalcium phosphate or nano-hydroxyapatite concentration, the intensity of the functional group characteristic peak increased. (3) X-ray diffraction: Under the regulation of dentin slices, the crystallinity of nano-β-tricalcium phosphate and nano-hydroxyapatite increased, the crystal structure became more complete, and the grains became smaller. Among them, 30% nano-β-tricalcium phosphate/dentin slices and 30% nano-hydroxyapatite/dentin slices had the best crystallinity. (4) X-ray photoelectron spectroscopy: Under the regulation of dentin slices, the elemental composition of nano-β-tricalcium phosphate and nano-hydroxyapatite remained unchanged, but some chemical state changes and characteristic peak intensity enhancement characteristics appeared. (5) The results show that the characterization performance of nano-β-tricalcium phosphate or nano-hydroxyapatite composites constructed with dentin slices as hard templates is stable, and dentin slices have a certain regulatory function on nano-β-tricalcium phosphate and nano-hydroxyapatite. Among them, 30% nano-β-tricalcium phosphate/dentin slices and 30% nano-hydroxyapatite/dentin slices have better characterization performance.

Key words: nano β-tricalcium phosphate">, nano-hydroxyapatite">, hard template">, dentin slice">, characterization performance">, crystal">, microstructure, molecular structure

中图分类号: