中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (2): 433-442.doi: 10.12307/2026.515

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

乳液静电纺丝法制备聚己内酯/低分子量褐藻多糖纳米纤维及生物相容性评价

汪  影1,2,王雅文3,徐颖婕4,王元非4,吴  桐1,2   

  1. 1青岛大学纺织服装学院,山东省医疗健康纺织材料重点实验室,山东省青岛市  266071;2青岛大学,青岛大学附属医院医学研究中心,山东省青岛市  266000;3康复大学康复科学与工程学院,山东省青岛市  266113;4青岛大学附属青岛市口腔医院,山东省青岛市  266001
  • 收稿日期:2024-10-12 接受日期:2024-12-18 出版日期:2026-01-18 发布日期:2025-07-01
  • 通讯作者: 吴桐,博士,教授,硕士生导师,青岛大学纺织服装学院,山东省医疗健康纺织材料重点实验室,山东省青岛市 266071;青岛大学,青岛大学附属医院医学研究中心,山东省青岛市 266000
  • 作者简介:汪影,女,1998年生,黑龙江省鸡西市人,汉族,硕士,主要从事生物医用纺织品方面的研究。
  • 基金资助:
    山东省自然科学基金青年项目(ZR2021QC063),项目负责人:王元非

Preparation of polycaprolactone/low molecular weight fucoidan nanofibers by emulsion electrospinning and assessment of their biocompatibility

Wang Ying1, 2, Wang Yawen3, Xu Yingjie4, Wang Yuanfei4, Wu Tong1, 2   

  1. 1Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile and Garments, Qingdao University, Qingdao 266071, Shandong Province, China; 2Medical Research Center of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong Province, China; 3School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, Shandong Province, China; 4Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, Shandong Province, China
  • Received:2024-10-12 Accepted:2024-12-18 Online:2026-01-18 Published:2025-07-01
  • Contact: Wu Tong, PhD, Professor, Master’s supervisor, Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile and Garments, Qingdao University, Qingdao 266071, Shandong Province, China; Medical Research Center of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong Province, China
  • About author:Wang Ying, MS, Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile and Garments, Qingdao University, Qingdao 266071, Shandong Province, China; Medical Research Center of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong Province, China
  • Supported by:
    Shandong Natural Science Foundation (Youth Project), No. ZR2021QC063 (to WYF)

摘要:

文题释义:
褐藻多糖:主要来源于褐藻类植物(如昆布、海带)的细胞壁,自然状态下呈黏稠状液体,是一种水溶性硫酸杂多糖,主要成分为硫酸化的α-L-岩藻糖,并含少量木糖、甘露糖、半乳糖和糖醛酸等。褐藻多糖具有抗凝血、抗氧化、抗炎等作用,可以保护内皮细胞功能,低分子量的褐藻多糖还具有促血管生成作用。
聚己内酯:是一种半结晶型聚合物,属于生物降解性高分子材料,是通过ε-己内酯单体在金属阴离子络合催化剂催化下开环聚合而成的高分子有机聚合物。聚己内酯具有多种特性,如良好的生物相容性、生物降解性、高结晶性和低熔点性,这些特性使聚己内酯在医学领域有广泛应用,包括药物载体、组织工程支架材料、整容材料、血管支架、手术缝合线等。

背景:目前人工血管的远期通畅率仍是一个亟需解决的问题,提高小口径人工血管的抗凝血性能对于其远期通畅至关重要。
目的:探讨壳芯结构聚己内酯/低分子量褐藻多糖纳米纤维的抗凝血活性以及对人脐静脉内皮细胞活性的影响。
方法:采用乳液静电纺丝方法制备聚己内酯纳米纤维膜与壳层为聚己内酯、芯层为低分子量褐藻多糖的聚己内酯/低分子量褐藻多糖纳米纤维膜(其中低分子量褐藻多糖与聚己内酯的质量比分别为10%,25%,40%,55%),通过扫描电子显微镜、荧光显微镜、红外光谱表征纤维的形态与结构,拉伸实验检测纤维膜的机械强度,1,9-二甲基亚甲蓝染料检测纳米纤维中低分子量褐藻多糖的负载率与缓释率,通过溶血实验、动态凝血实验、血浆再钙化实验与血小板黏附实验验证纤维膜的抗凝血性能。将5种纤维膜分别与人脐静脉内皮细胞共培养,通过CCK-8检测细胞增殖,荧光显微镜观察细胞形态。
结果与结论:①扫描电镜下可见聚己内酯/低分子量褐藻多糖纳米纤维膜表面光滑,纤维直径粗细均匀,无明显串珠结构,随着纤维膜中低分子量褐藻多糖含量的增加,纤维膜的直径增加、最大拉伸应力降低,但仍符合小口径人工血管的力学性能要求;荧光图像和红外光谱图证实低分子量褐藻多糖成功载入聚己内酯纳米纤维膜中,各组纤维膜负载的低分子量褐藻多糖在12 h内存在突释,48 h后以相对低的速度进行释放。②与聚己内酯纳米纤维膜相比,聚己内酯/低分子量褐藻多糖纳米纤维膜具有更好的抗凝活性,其中低分子量褐藻多糖与聚己内酯质量比为25%组抗凝效果最好。5种纤维膜均支持人脐静脉内皮细胞的生长增殖且不影响细胞形态,无明显的细胞毒性。③结果表明,聚己内酯/低分子量褐藻多糖纳米纤维膜具有良好的抗凝血功能、血液相容性与细胞相容性。
https://orcid.org/0009-0003-3101-1140(汪影)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程


关键词: 乳液静电纺丝, 壳芯结构, 低分子量褐藻多糖, 聚己内酯, 抗凝血, 工程化血管材料

Abstract: BACKGROUND: The long-term patency rate of synthetic blood vessels remains a significant challenge that requires urgent attention. Enhancing the anticoagulant performance of small-caliber artificial blood vessels is crucial in ensuring their long-term efficacy.
OBJECTIVE: To investigate the anticoagulation activity of polycaprolactone/low molecular weight fucoidan nanofibers with shell core structure and determine the effect on the activity of human umbilical vein endothelial cells.
METHODS: Polycaprolactone nanofiber membranes and polycaprolactone/low molecular weight fucoidan nanofiber membranes with polycaprolactone as shell layer and low molecular weight fucoidan as core layer were prepared by emulsion electrospinning method (the mass ratio of low molecular weight fucoidan to polycaprolactone was 10%, 25%, 40%, and 55%, respectively). The morphology and structure of the fibers were characterized by scanning electron microscopy, fluorescence microscopy, and infrared spectroscopy. The mechanical strength of the fiber membranes was detected by tensile test. The loading rate and sustained release rate of low molecular weight fucoidan in the nanofibers were detected by 1,9-dimethylmethylene blue dye. The anticoagulant properties of the fiber membranes were verified by hemolysis test, dynamic coagulation test, plasma recalcification test, and platelet adhesion test. The five fiber membranes were co-cultured with human umbilical vein endothelial cells. The cell proliferation was detected by CCK-8 assay and the cell morphology was observed by fluorescence microscopy.
RESULTS AND CONCLUSION: (1) Scanning electron microscope showed that the surface of polycaprolactone/low molecular weight brown algae polysaccharide nanofiber membrane was smooth, the fiber diameter was uniform, and there was no obvious beaded structure. With the increase of low molecular weight brown algae polysaccharide content in the fiber membrane, the diameter of the fiber membrane increased and the maximum tensile stress decreased, but it still met the mechanical properties requirements of small-caliber artificial blood vessels. Fluorescence images and infrared spectra confirmed that low molecular weight brown algae polysaccharide was successfully loaded into polycaprolactone nanofiber membrane, and the low molecular weight brown algae polysaccharide loaded in each group of fiber membranes was released suddenly within 12 hours and released at a relatively low rate after 48 hours. (2) Compared with polycaprolactone nanofiber membrane, polycaprolactone/low molecular weight brown algae polysaccharide nanofiber membrane had better anticoagulant activity, among which the group with a mass ratio of low molecular weight brown algae polysaccharide to polycaprolactone of 25% had the best anticoagulant effect. All five fiber membranes supported the growth and proliferation of human umbilical vein endothelial cells without affecting cell morphology and had no obvious cytotoxicity. (3) The results show that the polycaprolactone/low molecular weight brown algae polysaccharide nanofiber membrane has good anticoagulant function, blood compatibility, and cell compatibility.

Key words: emulsion electrospinning, core-shell structure, low molecular weight fucoidan, polycaprolactone, anticoagulant, engineered vascular materials

中图分类号: