中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (14): 3061-3069.doi: 10.12307/2025.620
• 组织构建综述 tissue construction review • 上一篇 下一篇
刘敏琦1,高明威1,褚晓蕾2,邢 政2,李世浩2,丁 宁1,李亚杰1,李 奇2
收稿日期:
2024-05-30
接受日期:
2024-07-15
出版日期:
2025-05-18
发布日期:
2024-09-29
通讯作者:
李奇,硕士,副主任医师,天津大学天津医院康复医学科,天津市 300211
作者简介:
刘敏琦,男,1999年生,天津市人,汉族,天津体育学院在读硕士研究生,主要从事运动康复、周围神经损伤、周围神经病理性疼痛研究。
基金资助:
Liu Minqi1, Gao Mingwei1, Chu Xiaolei2, Xing Zheng2, Li Shihao2, Ding Ning1, Li Yajie1, Li Qi2
Received:
2024-05-30
Accepted:
2024-07-15
Online:
2025-05-18
Published:
2024-09-29
Contact:
Li Qi, MS, Associate chief physician, Department of Rehabilitation Medicine, Tianjin University Tianjin Hospital, Tianjin 300211, China
About author:
1College of Exercise & Health, Tianjin University of Sport, Tianjin 301617, China; 2Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin 300211, China
Liu Minqi, Master candidate, College of Exercise & Health, Tianjin University of Sport, Tianjin 301617, China
Supported by:
摘要:
文题释义:
沃勒变性:神经轴突因创伤断裂后,其远端的神经纤维发生的顺序性变化。由于轴浆运输被阻断,轴突断端远侧的部分很快自近端向远端发生变性、解体。
低频电刺激:低频电疗法是临床中应用广泛的电刺激治疗之一,应用频率1 000 Hz以下的电流作用于皮肤、肌肉或神经上。低频电疗法能够促进感觉、运动神经元恢复,缓解疼痛,改善患者的运动功能。
背景:电刺激是治疗周围神经损伤有效的治疗方案,但不同频率电刺激促进周围神经恢复的机制和应用不同。
目的:旨在系统梳理和总结不同频率电刺激在周围神经损伤治疗中的作用和应用,深入分析各种方法的优缺点,以期找到最有利于患者神经恢复的治疗策略。
方法:应用计算机检索中国知网、PubMed数据库自建库至2024年5月期间的相关文献,英文检索词为“peripheral nerve injury,electrical stimulation,low frequency electrical stimulation,medium frequency electrical stimulation,high frequency electrical stimulation,TENS,interfering electricity,short wave,ultrashort wave,frequency”,中文检索词为“周围神经损伤,电刺激,低频电刺激,中频电刺激,高频电刺激,干扰电疗法,短波,超短波,频率,周围神经再生”,最终纳入74篇文献进行分析。
结果与结论:周围神经损伤作为临床中常见的疾病,会引起患者感觉与运动功能障碍。低频电刺激能够促进电刺激后细胞增殖并加速细胞内神经生长因子表达,促进巨噬细胞募集和浸润,加速髓磷脂碎片的清除,促进受损轴突的髓鞘再生。中频电刺激能够作用于更深部位组织,对于缓解神经性疼痛方面更佳。高频电刺激能够促进施万细胞和巨噬细胞增殖并抑制炎性因子,更快募集到神经损伤部位,加快神经修复的速度。不同频率的电刺激在周围神经损伤恢复中各具优点,但是仍存在一些问题,例如电刺激的部位以及应对各种疾病类型的方案不同等。
https://orcid.org/0009-0000-2034-1492(刘敏琦)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
刘敏琦, 高明威, 褚晓蕾, 邢 政, 李世浩, 丁 宁, 李亚杰, 李 奇. 不同频率电刺激促进周围神经损伤的恢复[J]. 中国组织工程研究, 2025, 29(14): 3061-3069.
Liu Minqi, Gao Mingwei, Chu Xiaolei, Xing Zheng, Li Shihao, Ding Ning, Li Yajie, Li Qi . Different frequencies of electrical stimulation promote recovery from peripheral nerve injury[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(14): 3061-3069.
[1] LI NY, ONOR GI, LEMME NJ, et al. Epidemiology of Peripheral Nerve Injuries in Sports, Exercise, and Recreation in the United States, 2009 - 2018. Phys Sportsmed. 2021;49(3):355-362. [2] CHU X, SONG X, LI R, et al. Multielectrode Array-Based Percutaneous Nerve Stimulation Strategy With Ultrasound Guidance for Ulnar Nerve Injury. IEEE Trans Neural Syst Rehabil Eng. 2023:PP. doi: 10.1109/TNSRE.2023.3247164. [3] PADOVANO WM, DENGLER J, PATTERSON MM, et al. Incidence of Nerve Injury After Extremity Trauma in the United States. Hand(N Y). 2022;17(4):615-623. [4] GORDON T. Brief Electrical Stimulation Promotes Recovery after Surgical Repair of Injured Peripheral Nerves. Int J Mol Sci. 2024;25(1):665. [5] KONG J, TENG C, LIU F, et al. Enhancing regeneration and repair of long-distance peripheral nerve defect injuries with continuous microcurrent electrical nerve stimulation. Front Neurosci. 2024;18:1361590. [6] LI C, LIU SY, PI W, et al. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res. 2021;16(8):1518-1523. [7] SUZUKI K, TANAKA H, EBARA M, et al. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model. Acta Biomater. 2017;53:250-259. [8] LOPES B, SOUSA P, ALVITES R, et al. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci. 2022;23(2):918. [9] MATTOS E, GUEDES A, LESSA PIF, et al. Influence of surface peripheral electrical stimulation on nerve regeneration after digital nerve neurorrhaphy: study protocol for a randomized clinical trial. F1000Res. 2021;10:219. [10] GORDON T. Peripheral Nerve Regeneration and Muscle Reinnervation. Int J Mol Sci. 2020;21(22):8652. [11] YU X, ZHANG F, CHEN B. Effect of transcutaneous electrical acupuncture point stimulation at different frequencies in a rat model of neuropathic pain. Acupunct Med. 2017;35(2):142-147. [12] WILSON DH, JAGADEESH P, NEWMAN PP, et al. The effects of pulsed electromagnetic energy on peripheral nerve regeneration. Ann N Y Acad Sci. 1974;238:575-585. [13] HOFFMAN H. Acceleration and retardation of the process of axon-sprouting in partially devervated muscles. Aust J Exp Biol Med Sci. 1952;30(6):541-566. [14] AL-MAJED AA, NEUMANN CM, BRUSHART TM, et al. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20(7):2602-2608. [15] CHAN KM, CURRAN M W, GORDON T. The use of brief post-surgical low frequency electrical stimulation to enhance nerve regeneration in clinical practice. J Physiol. 2016;594(13):3553-3559. [16] ROH J, SCHELLHARDT L, KEANE GC, et al. Short-Duration, Pulsatile, Electrical Stimulation Therapy Accelerates Axon Regeneration and Recovery following Tibial Nerve Injury and Repair in Rats. Plast Reconstr Surg. 2022;149(4):681e-690e. [17] WARD AR, ROBERTSON VJ. Variation in torque production with frequency using medium frequency alternating current. Arch Phys Med Rehabil. 1998;79(11):1399-1404. [18] PANG CJ, TONG L, JI LL, et al. Synergistic effects of ultrashort wave and bone marrow stromal cells on nerve regeneration with acellular nerve allografts. Synapse. 2013;67(10):637-647. [19] KNOTT EP, ASSI M, PEARSE DD. Cyclic AMP signaling: a molecular determinant of peripheral nerve regeneration. Biomed Res Int. 2014; 2014:651625. [20] RIGONI M, NEGRO S. Signals Orchestrating Peripheral Nerve Repair. Cells. 2020;9(8):1768. [21] LU MC, TSAI CC, CHEN SC, et al. Use of electrical stimulation at different current levels to promote recovery after peripheral nerve injury in rats. J Trauma. 2009;67(5):1066-1072. [22] LI J, KONG X, GOZANI SN, et al. Current-distance relationships for peripheral nerve stimulation localization. Anesth Analg. 2011;112(1): 236-241. [23] WANG G, DOKOS S. Selective myelinated nerve fiber stimulation via temporal interfering electric fields. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:6033-6036. [24] ZUO KJ, GORDON T, CHAN K M, et al. Electrical stimulation to enhance peripheral nerve regeneration: Update in molecular investigations and clinical translation. Exp Neurol. 2020;332:113397. [25] CHAROUS S J, HUTZ M J, BIALEK S E, et al. Muscle-Nerve-Nerve Grafting Improves Facial Reanimation in Rats Following Facial Nerve Injury. Front Neurol. 2021;12:723024. [26] HUANG Z, GUO Z, SUN M, et al. A study on graphene composites for peripheral nerve injury repair under electrical stimulation. RSC Adv. 2019;9(49):28627-28635. [27] STICKLER Y, MARTINEK J, HOFER C, et al. A finite element model of the electrically stimulated human thigh: changes due to denervation and training. Artif Organs. 2008;32(8):620-624. [28] CHU XL, SONG XZ, LI Q, et al. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res. 2022;17(10):2185-2193. [29] 朱东明,薛军,蒋毅. 低频电刺激治疗周围神经损伤的研究进展 [J].现代实用医学,2023,35(9):1250-1252. [30] FU T, LINEAWEAVER WC, ZHANG F, et al. Role of shortwave and microwave diathermy in peripheral neuropathy. J Int Med Res. 2019; 47(8):3569-3579. [31] LU MC, HO CY, HSU SF, et al. Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve. Neurorehabil Neural Repair. 2008;22(4):367-373. [32] AGNEW WF, MCCREERY DB, YUEN TG, et al. Evolution and resolution of stimulation-induced axonal injury in peripheral nerve. Muscle Nerve. 1999;22(10):1393-1402. [33] 于淑芬,佟俐,刘淑芳,等. 调制中频脉冲电促进周围神经功能恢复的研究 [J]. 中华理疗杂志,1997(1): 3-7. [34] NEUDORFER C, CHOW CT, BOUTET A, et al. Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimul. 2021;14(3):513-530. [35] 李熙明,王爱华,张宏. 分米波治疗腓总神经损伤疗效观察 [J].河北医药,2009,31(16):2073-2074. [36] 李巍巍,苑秀华,张立新,等. 超短波对大鼠坐骨神经损伤后神经传导速度及其损伤运动神经元内VEGF表达的影响 [J]. 中国康复理论与实践,2010,16(8):744-747+801. [37] 王焕芸. 不同剂量超短波对大鼠坐骨神经损伤后的修复及再生作用 [J]. 齐齐哈尔医学院学报,2019,40(16):1992-1994.
[38] KAWAMURA K, KANO Y. Electrical stimulation induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway. Neurosci Lett. 2019;698:81-84. [39] MCGREGOR C E, ENGLISH A W. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front Cell Neurosci. 2018;12:522. [40] HUANG J, YE Z, HU X, et al. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia. 2010; 58(5):622-631. [41] LI X, ZHANG T, LI C, et al. Electrical stimulation accelerates Wallerian degeneration and promotes nerve regeneration after sciatic nerve injury. Glia. 2023;71(3):758-774. [42] OSHIMA E, HAYASHI Y, XIE Z, et al. M2 macrophage-derived cathepsin S promotes peripheral nerve regeneration via fibroblast-Schwann cell-signaling relay. J Neuroinflammation. 2023;20(1):258. [43] WITZEL C, BRUSHART TM, KOULAXOUZIDIS G, et al. Electrical Nerve Stimulation Enhances Perilesional Branching after Nerve Grafting but Fails to Increase Regeneration Speed in a Murine Model. J Reconstr Microsurg. 2016;32(6):491-497. [44] RAMPAZO ÉP, LIEBANO RE. Analgesic Effects of Interferential Current Therapy: A Narrative Review. Medicina (Kaunas). 2022;58(1):141. [45] WYNDAELE JJ. Study on the influence of the type of current and the frequency of impulses used for electrical stimulation on the contraction of pelvic muscles with different fibre content. Scand J Urol. 2016;50(3):228-233. [46] DEWBERRY LS, DRU AB, GRAVENSTINE M, et al. Partial high frequency nerve block decreases neuropathic signaling following chronic sciatic nerve constriction injury. J Neural Eng. 2021;18(2). doi: 10.1088/1741-2552/abbf03.. [47] ZHAO F, HE W, ZHANG Y, et al. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves. Neural Regen Res. 2013;8(21):1974-1984. [48] 田德虎,张英泽,赵峰,等. 分米波对大鼠再生神经NGF mRNA表达的影响 [J]. 中华物理医学与康复杂志,2005,27(3):16-19. [49] 高杨. 微波对实验性大鼠周围神经损伤后功能恢复的影响 [D].大连:大连医科大学.2011. [50] O’BRIEN AL, WEST JM, SAFFARI TM, et al. Promoting Nerve Regeneration: Electrical Stimulation, Gene Therapy, and Beyond. Physiology (Bethesda). 2022;37(6):0. doi: 10.1152/physiol.00008.2022. [51] ARTHUR-FARRAJ PJ, LATOUCHE M, WILTON DK, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75(4):633-647. [52] ELABD R, ALABDULKARIM A, ALSABAH S, et al. Role of Electrical Stimulation in Peripheral Nerve Regeneration: A Systematic Review. Plast Reconstr Surg Glob Open. 2022;10(3):e4115. [53] POWER HA, MORHART MJ, OLSON JL, et al. Postsurgical Electrical Stimulation Enhances Recovery Following Surgery for Severe Cubital Tunnel Syndrome: A Double-Blind Randomized Controlled Trial. Neurosurgery. 2020;86(6):769-777. [54] SINGH B, XU QG, FRANZ CK, et al. Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection gaps following a brief electrical stimulation paradigm. J Neurosurg. 2012; 116(3):498-512. [55] LAGERQUIST O, WALSH LD, BLOUIN JS, et al. Effect of a peripheral nerve block on torque produced by repetitive electrical stimulation. J Appl Physiol (1985). 2009;107(1):161-167. [56] DI PALMA M, AMBROGINI P, LATTANZI D, et al. The impact of different exercise protocols on rat soleus muscle reinnervation and recovery following peripheral nerve lesion and regeneration. Front Physiol. 2022;13:948985. [57] CAMPOS DR, BUENO TBC, ANJOS J, et al. Early Neuromuscular Electrical Stimulation in Addition to Early Mobilization Improves Functional Status and Decreases Hospitalization Days of Critically Ill Patients. Crit Care Med. 2022;50(7):1116-1126. [58] BERTHELOT JM, DOUANE F, PLOTEAU S, et al. Venous congestion as a central mechanism of radiculopathies. Joint Bone Spine. 2022; 89(2):105291. [59] FLODIN J, WALLENIUS P, GUO L, et al. Wearable Neuromuscular Electrical Stimulation on Quadriceps Muscle Can Increase Venous Flow. Ann Biomed Eng. 2023;51(12):2873-2882. [60] SHAPIRA Y, SAMMONS V, FORDEN J, et al. Brief Electrical Stimulation Promotes Nerve Regeneration Following Experimental In-Continuity Nerve Injury. Neurosurgery. 2019;85(1):156-163. [61] LEE J, PARK E, KANG W, et al. An Efficient Noninvasive Neuromodulation Modality for Overactive Bladder Using Time Interfering Current Method. IEEE Trans Biomed Eng. 2021;68(1):214-224. [62] JU C, PARK E, KIM T, et al. Effectiveness of electrical stimulation on nerve regeneration after crush injury: Comparison between invasive and non-invasive stimulation. PLoS One. 2020;15(5):e0233531. [63] SINGH V, SANDHU D, XIANG N. Techniques for Peripheral Nerve Stimulator Implantation of the Upper Extremity. Pain Med. 2020; 21(Suppl 1):S27-s31. [64] CHU XL, SONG XZ, LI YR, et al. An ultrasound-guided percutaneous electrical nerve stimulation regimen devised using finite element modeling promotes functional recovery after median nerve transection. Neural Regen Res. 2023;18(3):683-688. [65] 唐伟. 电脑中频和低频电刺激辅助治疗周围神经损伤的疗效观察 [J]. 中国疗养医学,2012,21(12):1112. [66] MARIS S, BRANDS M, LENSKENS D, et al. Transcutaneous electrical nerve inhibition using medium frequency alternating current. Sci Rep. 2022;12(1):14911. [67] KAYE AD, RIDGELL S, ALPAUGH E S, et al. Peripheral Nerve Stimulation: A Review of Techniques and Clinical Efficacy. Pain Ther. 2021;10(2): 961-972. [68] DIAS LV, CORDEIRO MA, SCHMIDT DE SALES R, et al. Immediate analgesic effect of transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) on chronic low back pain: Randomised placebo-controlled trial. J Bodyw Mov Ther. 2021;27:181-190. [69] ALMEIDA N, PALADINI LH, KORELO RG, et al. Immediate Effects of the Combination of Interferential Therapy Parameters on Chronic Low Back Pain: A Randomized Controlled Trial. Pain Pract. 2020;20(6):615-625. [70] 赵晓璇, 刘帅祎, 李奇, 等. 不同运动方式促进周围神经损伤后的功能恢复 [J]. 中国组织工程研究,2025,29(6):1248-1256. [71] 刘海洋, 师燕, 朱一凡. 针刺联合超短波治疗面神经炎的临床研究 [J]. 黑龙江医药科学,2022,45(5):159-160. [72] JAN MH, CHAI HM, WANG CL, et al. Effects of repetitive shortwave diathermy for reducing synovitis in patients with knee osteoarthritis: an ultrasonographic study. Phys Ther. 2006;86(2):236-244. [73] PARK S, LIU CY, WARD PJ, et al. Effects of Repeated 20-Hz Electrical Stimulation on Functional Recovery Following Peripheral Nerve Injury. Neurorehabil Neural Repair. 2019;33(9):775-784. [74] CHO Y, PARK J, LEE C, et al. Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectron Med. 2020;6(1):23. |
[1] | 赵晓璇, 刘帅祎, 李 奇, 邢 政, 李庆雯, 褚晓蕾. 不同运动方式促进周围神经损伤后的功能恢复[J]. 中国组织工程研究, 2025, 29(6): 1248-1256. |
[2] | 刘 赞, 安 冉, 李宝成. 普伐他汀对大鼠坐骨神经压碎损伤功能恢复的影响[J]. 中国组织工程研究, 2025, 29(5): 942-950. |
[3] | 杨 彬, 陶广义, 杨 顺, 许俊杰, 黄俊卿. 人工智能在脊髓神经损伤与修复领域研究热点的可视化分析[J]. 中国组织工程研究, 2025, 29(4): 761-770. |
[4] | 闫 锐, 王一宇, 刘 雪, 姜佑荣, 程焕芝, 马 哲. 负载外泌体的水凝胶在神经损伤再生与创面修复中的应用[J]. 中国组织工程研究, 2025, 29(34): 7439-7446. |
[5] | 王 贺, 于少泓, . 经颅直流电刺激改善脑卒中患者下肢运动功能障碍的Meta分析[J]. 中国组织工程研究, 2025, 29(30): 6556-6565. |
[6] | 赵晓璇, 刘帅祎, 邢 政, 李庆雯, 褚晓蕾, 李 奇. 周围神经损伤领域组织工程技术应用的研究热点与趋势变化[J]. 中国组织工程研究, 2025, 29(30): 6591-6600. |
[7] | 郑 翔, 张明兴, 黄 雅, 单莎瑞. 生物反馈助力电刺激对慢性非特异性腰痛患者下肢步行功能的改善[J]. 中国组织工程研究, 2025, 29(3): 547-553. |
[8] | 柳小军, 商雨情, 管文超, 许琳琳, 李贵才. 负载钛酸钙取向性静电纺聚己内酯/丝素蛋白支架促进周围神经再生[J]. 中国组织工程研究, 2025, 29(28): 6070-6082. |
[9] | 张 彤, 王 妍, 杨春佳, 岳庆鲲, 吴庆田. 功能性水凝胶在创伤性脑损伤组织修复中的作用[J]. 中国组织工程研究, 2025, 29(28): 6110-6117. |
[10] | 乔正基, 柴牛兵, 郑璐瑶, 高云娜, 汪 洋. 全身振动训练改善绝经后女性骨密度效果的Meta分析[J]. 中国组织工程研究, 2025, 29(24): 5195-5202. |
[11] | 赵玉欣, 张德旗, 毕鸿雁. 非侵入性脑刺激不同刺激方式对帕金森病患者认知功能影响的网状Meta分析[J]. 中国组织工程研究, 2025, 29(24): 5212-5223. |
[12] | 胡 通, 李 萱, 袁 静, 王 伟. 不同电磁刺激方案改善脑卒中后吞咽障碍的网状Meta分析[J]. 中国组织工程研究, 2025, 29(24): 5224-5236. |
[13] | 刘 庆, 高 博, 杨 霄, 姜 宇, 王 培. 电刺激诱导miR-741-3p调控Radil促进施万细胞的迁移[J]. 中国组织工程研究, 2025, 29(19): 4038-4043. |
[14] | 黄晓萌, 张芝兰, 尚文雅, 黄 靖, 韦慧麟, 李 冰, 任亚锋. 针刺联合神经干细胞修复脊髓损伤的科学依据[J]. 中国组织工程研究, 2025, 29(19): 4111-4121. |
[15] | 宋佳妹, 刘挺挺, 姚 斌. 神经系统在调控皮肤创伤修复和瘢痕愈合中的重要作用[J]. 中国组织工程研究, 2025, 29(18): 3877-3884. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 172
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 316
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||