[1] LI NY, ONOR GI, LEMME NJ, et al. Epidemiology of Peripheral Nerve Injuries in Sports, Exercise, and Recreation in the United States, 2009 - 2018. Phys Sportsmed. 2021;49(3):355-362.
[2] CHU X, SONG X, LI R, et al. Multielectrode Array-Based Percutaneous Nerve Stimulation Strategy With Ultrasound Guidance for Ulnar Nerve Injury. IEEE Trans Neural Syst Rehabil Eng. 2023:PP. doi: 10.1109/TNSRE.2023.3247164.
[3] PADOVANO WM, DENGLER J, PATTERSON MM, et al. Incidence of Nerve Injury After Extremity Trauma in the United States. Hand(N Y). 2022;17(4):615-623.
[4] GORDON T. Brief Electrical Stimulation Promotes Recovery after Surgical Repair of Injured Peripheral Nerves. Int J Mol Sci. 2024;25(1):665.
[5] KONG J, TENG C, LIU F, et al. Enhancing regeneration and repair of long-distance peripheral nerve defect injuries with continuous microcurrent electrical nerve stimulation. Front Neurosci. 2024;18:1361590.
[6] LI C, LIU SY, PI W, et al. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res. 2021;16(8):1518-1523.
[7] SUZUKI K, TANAKA H, EBARA M, et al. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model. Acta Biomater. 2017;53:250-259.
[8] LOPES B, SOUSA P, ALVITES R, et al. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci. 2022;23(2):918.
[9] MATTOS E, GUEDES A, LESSA PIF, et al. Influence of surface peripheral electrical stimulation on nerve regeneration after digital nerve neurorrhaphy: study protocol for a randomized clinical trial. F1000Res. 2021;10:219.
[10] GORDON T. Peripheral Nerve Regeneration and Muscle Reinnervation. Int J Mol Sci. 2020;21(22):8652.
[11] YU X, ZHANG F, CHEN B. Effect of transcutaneous electrical acupuncture point stimulation at different frequencies in a rat model of neuropathic pain. Acupunct Med. 2017;35(2):142-147.
[12] WILSON DH, JAGADEESH P, NEWMAN PP, et al. The effects of pulsed electromagnetic energy on peripheral nerve regeneration. Ann N Y Acad Sci. 1974;238:575-585.
[13] HOFFMAN H. Acceleration and retardation of the process of axon-sprouting in partially devervated muscles. Aust J Exp Biol Med Sci. 1952;30(6):541-566.
[14] AL-MAJED AA, NEUMANN CM, BRUSHART TM, et al. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20(7):2602-2608.
[15] CHAN KM, CURRAN M W, GORDON T. The use of brief post-surgical low frequency electrical stimulation to enhance nerve regeneration in clinical practice. J Physiol. 2016;594(13):3553-3559.
[16] ROH J, SCHELLHARDT L, KEANE GC, et al. Short-Duration, Pulsatile, Electrical Stimulation Therapy Accelerates Axon Regeneration and Recovery following Tibial Nerve Injury and Repair in Rats. Plast Reconstr Surg. 2022;149(4):681e-690e.
[17] WARD AR, ROBERTSON VJ. Variation in torque production with frequency using medium frequency alternating current. Arch Phys Med Rehabil. 1998;79(11):1399-1404.
[18] PANG CJ, TONG L, JI LL, et al. Synergistic effects of ultrashort wave and bone marrow stromal cells on nerve regeneration with acellular nerve allografts. Synapse. 2013;67(10):637-647.
[19] KNOTT EP, ASSI M, PEARSE DD. Cyclic AMP signaling: a molecular determinant of peripheral nerve regeneration. Biomed Res Int. 2014; 2014:651625.
[20] RIGONI M, NEGRO S. Signals Orchestrating Peripheral Nerve Repair. Cells. 2020;9(8):1768.
[21] LU MC, TSAI CC, CHEN SC, et al. Use of electrical stimulation at different current levels to promote recovery after peripheral nerve injury in rats. J Trauma. 2009;67(5):1066-1072.
[22] LI J, KONG X, GOZANI SN, et al. Current-distance relationships for peripheral nerve stimulation localization. Anesth Analg. 2011;112(1): 236-241.
[23] WANG G, DOKOS S. Selective myelinated nerve fiber stimulation via temporal interfering electric fields. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:6033-6036.
[24] ZUO KJ, GORDON T, CHAN K M, et al. Electrical stimulation to enhance peripheral nerve regeneration: Update in molecular investigations and clinical translation. Exp Neurol. 2020;332:113397.
[25] CHAROUS S J, HUTZ M J, BIALEK S E, et al. Muscle-Nerve-Nerve Grafting Improves Facial Reanimation in Rats Following Facial Nerve Injury. Front Neurol. 2021;12:723024.
[26] HUANG Z, GUO Z, SUN M, et al. A study on graphene composites for peripheral nerve injury repair under electrical stimulation. RSC Adv. 2019;9(49):28627-28635.
[27] STICKLER Y, MARTINEK J, HOFER C, et al. A finite element model of the electrically stimulated human thigh: changes due to denervation and training. Artif Organs. 2008;32(8):620-624.
[28] CHU XL, SONG XZ, LI Q, et al. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res. 2022;17(10):2185-2193.
[29] 朱东明,薛军,蒋毅. 低频电刺激治疗周围神经损伤的研究进展 [J].现代实用医学,2023,35(9):1250-1252.
[30] FU T, LINEAWEAVER WC, ZHANG F, et al. Role of shortwave and microwave diathermy in peripheral neuropathy. J Int Med Res. 2019; 47(8):3569-3579.
[31] LU MC, HO CY, HSU SF, et al. Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve. Neurorehabil Neural Repair. 2008;22(4):367-373.
[32] AGNEW WF, MCCREERY DB, YUEN TG, et al. Evolution and resolution of stimulation-induced axonal injury in peripheral nerve. Muscle Nerve. 1999;22(10):1393-1402.
[33] 于淑芬,佟俐,刘淑芳,等. 调制中频脉冲电促进周围神经功能恢复的研究 [J]. 中华理疗杂志,1997(1): 3-7.
[34] NEUDORFER C, CHOW CT, BOUTET A, et al. Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimul. 2021;14(3):513-530.
[35] 李熙明,王爱华,张宏. 分米波治疗腓总神经损伤疗效观察 [J].河北医药,2009,31(16):2073-2074.
[36] 李巍巍,苑秀华,张立新,等. 超短波对大鼠坐骨神经损伤后神经传导速度及其损伤运动神经元内VEGF表达的影响 [J]. 中国康复理论与实践,2010,16(8):744-747+801.
[37] 王焕芸. 不同剂量超短波对大鼠坐骨神经损伤后的修复及再生作用 [J]. 齐齐哈尔医学院学报,2019,40(16):1992-1994.
[38] KAWAMURA K, KANO Y. Electrical stimulation induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway. Neurosci Lett. 2019;698:81-84.
[39] MCGREGOR C E, ENGLISH A W. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front Cell Neurosci. 2018;12:522.
[40] HUANG J, YE Z, HU X, et al. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia. 2010; 58(5):622-631.
[41] LI X, ZHANG T, LI C, et al. Electrical stimulation accelerates Wallerian degeneration and promotes nerve regeneration after sciatic nerve injury. Glia. 2023;71(3):758-774.
[42] OSHIMA E, HAYASHI Y, XIE Z, et al. M2 macrophage-derived cathepsin S promotes peripheral nerve regeneration via fibroblast-Schwann cell-signaling relay. J Neuroinflammation. 2023;20(1):258.
[43] WITZEL C, BRUSHART TM, KOULAXOUZIDIS G, et al. Electrical Nerve Stimulation Enhances Perilesional Branching after Nerve Grafting but Fails to Increase Regeneration Speed in a Murine Model. J Reconstr Microsurg. 2016;32(6):491-497.
[44] RAMPAZO ÉP, LIEBANO RE. Analgesic Effects of Interferential Current Therapy: A Narrative Review. Medicina (Kaunas). 2022;58(1):141.
[45] WYNDAELE JJ. Study on the influence of the type of current and the frequency of impulses used for electrical stimulation on the contraction of pelvic muscles with different fibre content. Scand J Urol. 2016;50(3):228-233.
[46] DEWBERRY LS, DRU AB, GRAVENSTINE M, et al. Partial high frequency nerve block decreases neuropathic signaling following chronic sciatic nerve constriction injury. J Neural Eng. 2021;18(2). doi: 10.1088/1741-2552/abbf03..
[47] ZHAO F, HE W, ZHANG Y, et al. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves. Neural Regen Res. 2013;8(21):1974-1984.
[48] 田德虎,张英泽,赵峰,等. 分米波对大鼠再生神经NGF mRNA表达的影响 [J]. 中华物理医学与康复杂志,2005,27(3):16-19.
[49] 高杨. 微波对实验性大鼠周围神经损伤后功能恢复的影响 [D].大连:大连医科大学.2011.
[50] O’BRIEN AL, WEST JM, SAFFARI TM, et al. Promoting Nerve Regeneration: Electrical Stimulation, Gene Therapy, and Beyond. Physiology (Bethesda). 2022;37(6):0. doi: 10.1152/physiol.00008.2022.
[51] ARTHUR-FARRAJ PJ, LATOUCHE M, WILTON DK, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75(4):633-647.
[52] ELABD R, ALABDULKARIM A, ALSABAH S, et al. Role of Electrical Stimulation in Peripheral Nerve Regeneration: A Systematic Review. Plast Reconstr Surg Glob Open. 2022;10(3):e4115.
[53] POWER HA, MORHART MJ, OLSON JL, et al. Postsurgical Electrical Stimulation Enhances Recovery Following Surgery for Severe Cubital Tunnel Syndrome: A Double-Blind Randomized Controlled Trial. Neurosurgery. 2020;86(6):769-777.
[54] SINGH B, XU QG, FRANZ CK, et al. Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection gaps following a brief electrical stimulation paradigm. J Neurosurg. 2012; 116(3):498-512.
[55] LAGERQUIST O, WALSH LD, BLOUIN JS, et al. Effect of a peripheral nerve block on torque produced by repetitive electrical stimulation. J Appl Physiol (1985). 2009;107(1):161-167.
[56] DI PALMA M, AMBROGINI P, LATTANZI D, et al. The impact of different exercise protocols on rat soleus muscle reinnervation and recovery following peripheral nerve lesion and regeneration. Front Physiol. 2022;13:948985.
[57] CAMPOS DR, BUENO TBC, ANJOS J, et al. Early Neuromuscular Electrical Stimulation in Addition to Early Mobilization Improves Functional Status and Decreases Hospitalization Days of Critically Ill Patients. Crit Care Med. 2022;50(7):1116-1126.
[58] BERTHELOT JM, DOUANE F, PLOTEAU S, et al. Venous congestion as a central mechanism of radiculopathies. Joint Bone Spine. 2022; 89(2):105291.
[59] FLODIN J, WALLENIUS P, GUO L, et al. Wearable Neuromuscular Electrical Stimulation on Quadriceps Muscle Can Increase Venous Flow. Ann Biomed Eng. 2023;51(12):2873-2882.
[60] SHAPIRA Y, SAMMONS V, FORDEN J, et al. Brief Electrical Stimulation Promotes Nerve Regeneration Following Experimental In-Continuity Nerve Injury. Neurosurgery. 2019;85(1):156-163.
[61] LEE J, PARK E, KANG W, et al. An Efficient Noninvasive Neuromodulation Modality for Overactive Bladder Using Time Interfering Current Method. IEEE Trans Biomed Eng. 2021;68(1):214-224.
[62] JU C, PARK E, KIM T, et al. Effectiveness of electrical stimulation on nerve regeneration after crush injury: Comparison between invasive and non-invasive stimulation. PLoS One. 2020;15(5):e0233531.
[63] SINGH V, SANDHU D, XIANG N. Techniques for Peripheral Nerve Stimulator Implantation of the Upper Extremity. Pain Med. 2020; 21(Suppl 1):S27-s31.
[64] CHU XL, SONG XZ, LI YR, et al. An ultrasound-guided percutaneous electrical nerve stimulation regimen devised using finite element modeling promotes functional recovery after median nerve transection. Neural Regen Res. 2023;18(3):683-688.
[65] 唐伟. 电脑中频和低频电刺激辅助治疗周围神经损伤的疗效观察 [J]. 中国疗养医学,2012,21(12):1112.
[66] MARIS S, BRANDS M, LENSKENS D, et al. Transcutaneous electrical nerve inhibition using medium frequency alternating current. Sci Rep. 2022;12(1):14911.
[67] KAYE AD, RIDGELL S, ALPAUGH E S, et al. Peripheral Nerve Stimulation: A Review of Techniques and Clinical Efficacy. Pain Ther. 2021;10(2): 961-972.
[68] DIAS LV, CORDEIRO MA, SCHMIDT DE SALES R, et al. Immediate analgesic effect of transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) on chronic low back pain: Randomised placebo-controlled trial. J Bodyw Mov Ther. 2021;27:181-190.
[69] ALMEIDA N, PALADINI LH, KORELO RG, et al. Immediate Effects of the Combination of Interferential Therapy Parameters on Chronic Low Back Pain: A Randomized Controlled Trial. Pain Pract. 2020;20(6):615-625.
[70] 赵晓璇, 刘帅祎, 李奇, 等. 不同运动方式促进周围神经损伤后的功能恢复 [J]. 中国组织工程研究,2025,29(6):1248-1256.
[71] 刘海洋, 师燕, 朱一凡. 针刺联合超短波治疗面神经炎的临床研究 [J]. 黑龙江医药科学,2022,45(5):159-160.
[72] JAN MH, CHAI HM, WANG CL, et al. Effects of repetitive shortwave diathermy for reducing synovitis in patients with knee osteoarthritis: an ultrasonographic study. Phys Ther. 2006;86(2):236-244.
[73] PARK S, LIU CY, WARD PJ, et al. Effects of Repeated 20-Hz Electrical Stimulation on Functional Recovery Following Peripheral Nerve Injury. Neurorehabil Neural Repair. 2019;33(9):775-784.
[74] CHO Y, PARK J, LEE C, et al. Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectron Med. 2020;6(1):23.
|