[1] ANJUM A, YAZID MD, FAUZI DAUD M, et al. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci. 2020;21(20):7533.
[2] XIA H, WANG D, GUO X, et al. Catalpol Protects Against Spinal Cord Injury in Mice Through Regulating MicroRNA-142-Mediated HMGB1/TLR4/NF-κB Signaling Pathway. Front Pharmacol. 2020;11:630222.
[3] SHEN H, XU B, YANG C, et al. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials. 2022;280:121279.
[4] SIEBNER HR, FUNKE K, ABERRA AS, et al. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol. 2022;140:59-97.
[5] ROBAC A, NEVEU P, HUGEDE A, et al. Repetitive Trans Spinal Magnetic Stimulation Improves Functional Recovery and Tissue Repair in Contusive and Penetrating Spinal Cord Injury Models in Rats. Biomedicines. 2021;9(12):1827-1843.
[6] CHALFOUH C, GUILLOU C, HARDOUIN J, et al. The Regenerative Effect of Trans-spinal Magnetic Stimulation After Spinal Cord Injury: Mechanisms and Pathways Underlying the Effect. Neurotherapeutics. 2020;17(4):2069-2088.
[7] LUO J, FENG Y, HONG Z, et al. High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke. Neural Regen Res. 2024;19(8):1772-1780.
[8] ADEEL M, LIN BS, CHEN H C, et al. Motor Neuroplastic Effects of a Novel Paired Stimulation Technology in an Incomplete Spinal Cord Injury Animal Model. Int J Mol Sci. 2022;23(16):9447.
[9] LI H, MA J, ZHANG J, et al. Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Thyroid Hormones Level and Cognition in the Recovery Stage of Stroke Patients with Cognitive Dysfunction. Med Sci Monit. 2021;27:e931914.
[10] PAN J, LI H, WANG Y, et al. Effects of low-frequency rTMS combined with antidepressants on depression in patients with post-stroke depression: a systematic review and meta-analysis. Front Neurol. 2023; 14:1168333.
[11] YAO L, CAI H, FANG Q, et al. Piceatannol alleviates liver ischaemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 in hepatic macrophages. Eur J Pharmacol. 2023;960:176149.
[12] CAI Q, ZHAO C, XU Y, et al. Qingda granule alleviates cerebral ischemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 signaling in microglia. J Ethnopharmacol. 2024;324:117712.
[13] LI Y, LIANG W, GUO C, et al. Renshen Shouwu extract enhances neurogenesis and angiogenesis via inhibition of TLR4/NF-κB/NLRP3 signaling pathway following ischemic stroke in rats. J Ethnopharmacol. 2020;253:112616.
[14] 文峰, 周磊, 李扬, 等. 通腑逐瘀法指导下抵当汤加减可抑制大鼠急性脊髓损伤后胶质瘢痕的形成[J]. 中国组织工程研究,2023, 27(20):3180-3187.
[15] LIU Z, YAO X, JIANG W, et al. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation. 2020;17(1):90-110.
[16] FAN L, LIU C, CHEN X, et al. Exosomes-Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. Adv Sci (Weinh). 2022;9(13):e2105586.
[17] JIN Z, TIAN L, ZHANG Y, et al. Apigenin inhibits fibrous scar formation after acute spinal cord injury through TGFβ/SMADs signaling pathway. CNS Neurosci Ther. 2022;28(11):1883-1894.
[18] WANG R, BAI J. Pharmacological interventions targeting the microcirculation following traumatic spinal cord injury. Neural Regen Res. 2024;19(1):35-42.
[19] MITSUI T, ARII Y, TANIGUCHI K, et al. Efficacy of Repetitive Trans-spinal Magnetic Stimulation for Patients with Parkinson’s Disease: a Randomised Controlled Trial. Neurotherapeutics. 2022;19(4):1273-1282.
[20] YIN M, LIU Y, ZHANG L, et al. Effects of rTMS Treatment on Cognitive Impairment and Resting-State Brain Activity in Stroke Patients: A Randomized Clinical Trial. Front Neural Circuits.2020;14: 563777.
[21] BAO Z, BAO L, HAN N, et al. rTMS alleviates AD-induced cognitive impairment by inhibitng apoptosis in SAMP8 mouse. Aging (Albany NY). 2021;13(24):26034-26045.
[22] KHEDR LH, RAHMO RM, ELDEMERDASH OM, et al. Implication of M2 macrophage on NLRP3 inflammasome signaling in mediating the neuroprotective effect of Canagliflozin against methotrexate-induced cognitive impairment. Int Immunopharmacol. 2024;130:111709.
[23] DAI Y, WANG S, CHANG S, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol. 2020;142:65-79.
[24] TONG L, ZHANG X, HAO H, et al. Lactobacillus rhamnosus GG Derived Extracellular Vesicles Modulate Gut Microbiota and Attenuate Inflammatory in DSS-Induced Colitis Mice. Nutrients. 2021;13(10): 3319.
[25] KITCHEN P, SALMAN MM, HALSEY AM, et al. Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell. 2020;181(4):784-799.e719.
[26] LIU S, MAO J, WANG T, et al. Downregulation of Aquaporin-4 Protects Brain Against Hypoxia Ischemia via Anti-inflammatory Mechanism. Mol Neurobiol. 2017;54(8):6426-6435.
[27] HELLENBRAND DJ, QUINN CM, PIPER ZJ, et al. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation. 2021;18(1):284-299.
[28] LIU J, ZHANG N, ZHANG M, et al. N-acetylserotonin alleviated the expression of interleukin-1β in retinal ischemia-reperfusion rats via the TLR4/NF-κB/NLRP3 pathway. Exp Eye Res. 2021;208:108595.
[29] LONG JX, TIAN MZ, CHEN XY, et al. The role of NLRP3 inflammasome-mediated pyroptosis in ischemic stroke and the intervention of traditional Chinese medicine. Front Pharmacol. 2023;14:1151196.
[30] YAO J, LI Y, JIN Y, et al. Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways. Int Immunopharmacol. 2021;96: 107728.
[31] ZHOU Y, ZHANG H, ZHENG B, et al. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury. Int J Biol Sci. 2016; 12(1):87-99.
[32] LUO Y, CHENG J, FU Y, et al. D-allose Inhibits TLR4/PI3K/AKT Signaling to Attenuate Neuroinflammation and Neuronal Apoptosis by Inhibiting Gal-3 Following Ischemic Stroke. Biol Proced Online. 2023;25(1):30.
[33] 成建平, 李华, 李雄杰. 胡椒叶提取物干预可减轻急性脊髓损伤模型大鼠的氧化应激及炎症反应 [J]. 中国组织工程研究,2019,23(31): 5010-5016.
[34] FU K, XU W, LENAHAN C, et al. Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? . Front Cell Neurosci. 2022;16:1036313.
[35] LONG JX, TIAN MZ, CHEN XY, et al. The role of NLRP3 inflammasome-mediated pyroptosis in ischemic stroke and the intervention of traditional Chinese medicine. Front Pharmacol. 2023;14:1151196.
[36] JIN X, LIU M Y, ZHANG D F, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther. 2019;25(5):575-590.
[37] ZOU X, YANG XJ, GAN YM, et al. Neuroprotective Effect of Phthalide Derivative CD21 against Ischemic Brain Injury: Involvement of MSR1 Mediated DAMP peroxiredoxin1 Clearance and TLR4 Signaling Inhibition. J Neuroimmune Pharmacol. 2021;16(2):306-317.
[38] LUO L, LIU M, FAN Y, et al. Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice. J Neuroinflammation. 2022;19(1):141-167. |