中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (33): 7203-7210.doi: 10.12307/2025.853

• 骨科植入物相关临床实践 Clinical practice of orthopedic implant • 上一篇    下一篇

基于机器学习构建中青年人群颈椎失稳临床预测模型

李  靖,路广琦,庄明辉,崔  莹,俞张镜泽,孙馨悦,马明明,朱立国,于  杰   

  1. 中国中医科学院望京医院,北京市   100102
  • 收稿日期:2024-08-01 接受日期:2024-10-25 出版日期:2025-11-28 发布日期:2025-04-12
  • 通讯作者: 于杰,主任医师,博士生导师,中国中医科学院望京医院,北京市 100102
  • 作者简介:李靖,男,1999年生,江西省抚州市人,汉族,中国中医科学院望京医院在读硕士,主要从事中西医结合治疗骨关节退行性疾病的临床及基础研究。
  • 基金资助:
    国家自然科学基金面上项目(82074455),项目负责人:于杰;北京市科技计划首都临床诊疗技术研究及转化应用项目(Z211100002921023),项目负责人:于杰;中国中医科学院科技创新工程重大攻关项目(CI2021A02002),项目负责人:于杰;中国中医科学院望京医院高水平中医医院建设项目中医药临床循证研究专项(WJYY-XZKT-2023-01),项目负责人:于杰

Development of a clinical prediction model for cervical instability in young and middle-aged adults based on machine learning

Li Jing, Lu Guangqi, Zhuang Minghui, Cui Ying, Yu Zhangjingze, Sun Xinyue, Ma Mingming, Zhu Liguo, Yu Jie   

  1. Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
  • Received:2024-08-01 Accepted:2024-10-25 Online:2025-11-28 Published:2025-04-12
  • Contact: Yu Jie, Chief physician, Doctoral supervisor, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
  • About author:Li Jing, Master candidate, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
  • Supported by:
    National Natural Science Foundation of China (General Program), No. 82074455 (to YJ); Beijing Science and Technology Plan Capital Clinical Diagnosis and Treatment Technology Research and Transformation Application Project, No. Z211100002921023 (to YJ); China Academy of Chinese Medical Sciences Science and Technology Innovation Project, No. CI2021A02002 (to YJ); High-Level Chinese Medicine Hospital Construction Project Clinical Evidence-based Research Special Project of Wangjing Hospital of China Academy of Chinese Medical Sciences, No. WJYY-XZKT-2023-01 (to YJ) 

摘要:


文题释义:

颈椎失稳:是骨科的常见疾病,临床上常表现为颈肩部僵硬疼痛及活动受限、头痛头晕,有时伴有上肢的麻木疼痛等,多数患者经过休息或治疗后症状可明显缓解,但常因劳累或受风、受寒等因素而频繁复发,对患者的生活质量影响严重。
机器学习:是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。


背景:颈椎失稳是中青年人群常见骨科疾病,是颈椎病早期表现,对患者生活质量影响较大。因此,早期诊断颈椎失稳以实施早期干预具有积极的临床意义和社会意义。

目的:基于机器学习构建中青年人群颈椎失稳临床预测模型,在进行X射线片检查之前,实现中青年人群颈椎失稳早期筛查。
方法:2022年9月至2023年10月通过招募广告和中国中医科学院望京医院脊柱科门诊招募155例中青年颈椎失稳受试者和88例非颈椎失稳受试者作为研究对象,基于调查问卷形式现场采集受试者一般信息、生活工作习惯、不适症状、颈痛目测类比评分、颈椎功能障碍指数、健康调查简表(SF-36)等信息,并将以上信息作为预测因子,经筛选后,以支持向量机、轻量的梯度提升机、随机森林、逻辑回归分析、自适应提升算法、极致梯度提升分类器 6种机器学习算法采用十折交叉验证方法进行模型训练,构建颈椎失稳临床预测模型,以曲线下面积为主要评价指标。将预测因子进行单因素分析,并采用SHAP方法对预测因子的重要性进行排序,以相关性热力图展现预测因子之间及其与颈椎失稳之间的线性相关程度。

结果与结论:①6种机器学习模型中,选用随机森林模型为最终预测模型,包含年龄、体质量指数、颈围/颈长、颈痛目测类比评分、颈椎功能障碍指数、SF-36健康状况量表躯体疼痛、总体健康、生命活力、精神健康评分9个预测因子,曲线下面积=0.725 4,具有良好的预测能力,可作为早期筛查中青年人群颈椎失稳的参考工具;②两组受试者的年龄、颈痛目测类比评分、颈椎功能障碍指数、SF-36健康状况量表躯体疼痛、总体健康、生命活力评分相比差异有显著性意义(P < 0.05);③预测因子重要性排序为年龄、颈椎功能障碍指数、颈痛目测类比评分、总体健康、体质量指数、生命活力、躯体疼痛、颈围/颈长、精神健康,其中年龄、颈痛目测类比评分、颈椎功能障碍指数与颈椎失稳呈正相关,总体健康、体质量指数、生命活力、躯体疼痛、颈围/颈长、精神健康与颈椎失稳呈负相关。

https://orcid.org/0009-0000-0211-1538 (李靖) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 颈椎失稳, 临床预测模型, 机器学习, 中青年人群, 预测因子

Abstract: BACKGROUND: Cervical instability is a common orthopedic disease in young and middle-aged people, and is the early manifestation of cervical spondylosis, which has a great impact on the quality of life of patients. Therefore, early diagnosis of cervical instability to implement early intervention has positive clinical and social significance. 
OBJECTIVE: The clinical prediction model of cervical instability in young and middle-aged people was constructed based on machine learning to realize early screening of cervical instability in young and middle-aged people before X-ray examination.
METHODS: From September 2022 to October 2023, 155 young and middle-aged adults with cervical instability and 88 with non-cervical instability recruited through recruitment advertisements and spinal department outpatient of Wangjing Hospital, China Academy of Chinese Medical Sciences were selected as research subjects. The research subjects’ general information, living and working habits, discomfort symptoms, visual analog scale score, Neck Disability Index, and 36-Item Short Form Health Survey were collected on site based on questionnaires. The above information was used as predictive factors. After screening, six machine learning algorithms of Support Vector Machine, LightGBM, RandomForest, Logistic, AdaBoost, and XGBClassifier were used to train the model by ten-fold cross-validation method, and the clinical prediction model of cervical instability was constructed. Area under the curve was used as the main evaluation index. Univariate analysis was performed on the predictors, and SHAP method was used to rank the importance of the predictors. Correlation heat maps were used to show the degree of linear correlation between the predictors and the cervical instability.  
RESULTS AND CONCLUSION: (1) Among the six machine learning models, RandomForest model was chosen as the final prediction model, including nine predictors, such as age, body mass index, neck circumference/neck length, visual analog scale score, Neck Disability Index, bodily pain, general health, vitality, and mental health, area under the curve =0.725 4, and the calibration degree was good. It could be used as a reference tool for early screening of cervical instability in young and middle-aged people. (2) There were significant differences in age, visual analog scale score, Neck Disability Index, bodily pain, general health, and vitality between the two groups (P < 0.05). (3) The order of importance of predictors was age, Neck Disability Index, visual analog scale score, general health, body mass index, vitality, bodily pain, neck circumference/neck length, mental health, among which age, visual analog scale score, Neck Disability Index were positively correlated with cervical instability, while general health, body mass index, vitality, bodily pain, neck circumference/neck length, and mental health were negatively correlated with cervical instability.

Key words: cervical instability, clinical prediction model, machine learning, young and middle-aged people, predictor

中图分类号: