中国组织工程研究 ›› 2011, Vol. 15 ›› Issue (20): 3629-3632.doi: 10.3969/j.issn.1673-8225.2011.20.005

• 软骨组织构建 cartilage tissue construction • 上一篇    下一篇

组织工程修复关节软骨缺损的力学状态研究

张述卿1,张春秋1,高丽兰1,孙明林2,李  江1,刘海英1   

  1. 1天津理工大学机械工程学院,天津市  300384
    2武警医学院附属医院,天津市300162
  • 收稿日期:2011-01-12 修回日期:2011-02-15 出版日期:2011-05-14 发布日期:2011-05-14
  • 通讯作者: 张春秋,教授,天津理工大学机械工程学院,天津市300384 zhang_chunqiu@126.com
  • 作者简介:张述卿★,男,1984年生,河北省正定县人,汉族,天津理工大学在读硕士,主要从事机械设计及理论研究。 zh_angshuqing@126.com
  • 基金资助:

    国家自然科学基金项目(10872147):滚动载荷用于功能化关节软骨构建的研究;国家自然科学基金项目(31000422):人体关节软骨不同层区力学行为的研究;天津市自然科学基金项目(09JCYBJC14000):滚压载荷促进关节软骨功能化生长的研究。

Mechanical state researches on repairing articular cartilage defects by tissue engineering

Zhang Shu-qing1, Zhang Chun-qiu1, Gao Li-lan1, Sun Ming-lin2, Li Jiang1, Liu Hai-ying1   

  1. 1School of Mechanical Engineering, Tianjin University of Technology, Tianjin  300384, China
    2The Hospital of Medical College of CPLAP, Tianjin 300162, China
  • Received:2011-01-12 Revised:2011-02-15 Online:2011-05-14 Published:2011-05-14
  • Contact: Zhang Chun-qiu, Professor, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China zhang_chunqiu@126.com
  • About author:Zhang Shu-qing★, Studying for master’s degree, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China zh_angshuqing@126.com
  • Supported by:

    the National Natural Science Foundation of China, No. 10872147*, 31000422*; the Natural Science Foundation of Tianjin, No.09JCYBJC14000*

摘要:

背景:力学状态对软骨的正常生理有重要影响,若应力集中过大将造成人工软骨退变和原宿主软骨退化,影响治疗效果。目前的各种力学手段很难实现活体软骨力学状态测量,而有限元动态分析能有效地模拟修补后软骨的受力情况。
目的:通过有限元仿真研究组织工程修复膝关节软骨缺损后人工软骨和宿主软骨的力学状态。
方法:以人体膝关节软骨受滚压部分为研究对象,建立滚动运动下关节软骨的有限元模型。根据行走过程中股骨与胫骨间的滚压边界条件,对软骨在取不同弹性模量、不同压缩量、不同载荷速度及不同缺损大小的情况进行了滚压受力分析。
结果与结论:在滚压载荷下,植入人工软骨弹性模量和软骨压缩量的不同都使人工软骨和宿主软骨受到的Mises应力值变化,二者对修复缺损处软骨Mises应力分布的影响比较明显,是临床治疗软骨缺损和术后康复阶段值得注意的因素。模拟中使用的载荷速度和缺损大小对软骨应力值的影响不明显。当人工软骨弹性模量取某个值时,人工软骨和宿主软骨的Mises应力差别可以达到很小值,二者趋于吻合。应力差别还和个体宿主软骨的力学性能有关,据此,应针对不同病例选择最佳弹性模量的人工软骨植入。

关键词: 滚压载荷, 组织工程, 缺损类型, 有限元, 力学环境

Abstract:

BACKGROUND: Mechanical state has a major impact on the normal physiological activities of cartilage. Excessive stress concentration will cause both the artificial cartilage and the host cartilage degeneration, which will affect the treatment of cartilage defects. Today, it is difficult to find a proper way to measure the mechanical state of cartilage in vivo. Dynamic finite element analysis can simulate the mechanical state of repaired cartilage.
OBJECTIVE: Through finite element method, to research the stress distribution of artificial and host cartilage repaired by tissue engineering under rolling compression loads.
METHODS: Taking part of knee articular cartilage as the research object, a three-dimensional finite element model of relative-rolling movement of articular cartilage was established according to the dynamic boundary conditions between the femur and tibia during normal walking. Finite element technique was used to analyze articular cartilages with different elastic moduli, different compressions, different walking speeds and different defect sizes under the rolling compression loads.
RESULTS AND CONCLUSION: The changes of both the elastic modulus of the implant and compression make the Mises stress variation in both artificial and host cartilage. The modulus and compression have a more pronounced effect on Mises stress distribution at the defect site after tissue engineering repair and these are the main factors that worth being noticed in clinical treatment of cartilage defects and postoperative rehabilitation stage. The impact of different load speeds and defect sizes used in this simulation on Mises stress distribution were not obvious. When the elastic modulus of artificial cartilage takes a certain value, the stress differences of artificial and host cartilage will be very small. The smaller of the stress differences, and the better of the mechanical condition of cartilage in defects, which is helpful to the repairing of defect. The stress differences also have a relationship with the individual properties of host cartilage, so it guides the selection of the elastic modulus of artificial cartilage in repairing the cartilage defects.

中图分类号: