中国组织工程研究 ›› 2010, Vol. 14 ›› Issue (8): 1447-1550.doi: 10.3969/j.issn.1673-8225.2010.08.028

• 生物材料学术探讨 biomaterial academic discussion • 上一篇    下一篇

肌腱组织工程中三维支架材料性能及其力学特性

李  荣   

  1. 徐州师范大学体育学院,江苏省徐州市  221116
  • 出版日期:2010-02-19 发布日期:2010-02-19
  • 作者简介:李 荣★,女,1972年生,江苏省新沂市人,汉族,1996年南京体育学院毕业,硕士,讲师,主要从事体育教学、体育保健康复等方面的研究。 xzronger@sina.com

Performance and dynamical characteristics of three-dimensional stent materials in tendon tissue engineering

Li Rong   

  1. Institute of Physical Education, Xuzhou Normal University, Xuzhou   221116, Jiangsu Province, China
  • Online:2010-02-19 Published:2010-02-19
  • About author:Li Rong★, Master, Lecturer, Institute of Physical Education, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, China xzronger@sina.com

摘要:

目的:总结近年组织工程肌腱支架材料及组织工程技术修复肌腱缺损的研究进展。
方法:以“组织工程,肌腱支架材料,力学特性,肌腱移植” 为中文关键词, “Tissue Engineering,tendon,Scaffold” 为英文关键词,采用计算机检索1993-01/2009-10相关文章。纳入与组织工程肌腱力学性能及组织工程化肌腱的实验研究与临床应用相关的文章;排除重复研究或Meta分析类文章。以24篇文献为主,重点对一下4个问题进行了讨论:①肌腱组织工程的研究进展。②组织工程肌腱支架材料的生物力学分析。③生物材料在肌腱组织工程中的应用。④组织工程技术在修复肌腱缺损的临床应用。
结果:目前,肌腱组织工程研究的支架材料主要有天然高分子材料和合成高分子材料两大类。肌腱支架材料的制备和选择思路主要有两条:一是利用人工合成材料制造具有优异性能及结构的仿生材料;另一条是利用天然细胞外基质材料经处理后制备成天然衍生支架材料,利用生物组织原有生物结构特性构建组织工程化肌腱。组织工程化肌腱的构建必须模拟体内三维物理环境,采用微机控制步进电机对肌腱细胞-基质复合三维支架施以动态应变力,明显提高了肌腱细胞的增殖速率和胶原分泌量,且可牵引肌腱细胞沿应力方向延展。
结论:目前,实验提供的物理刺激也相对单一,模拟体内三维物理环境构建人工肌腱的技术和设备需要进一步研究和完善。要真正实现体外预制有生命的种植体完全替代体组织和器官功能,还有许多问题有待进一步的研究和解决。

关键词: 肌腱组织工程, 生物材料, 细胞支架, 生物力学, 人工肌腱

Abstract:

OBJECTIVE: To summarize research progress of tissue-engineered tendon stent material and its application for repairing tendon defect.
METHODS: A computer-based online search was conducted with the key words of “tissue engineering, tendon, scaffold” in both Chinese and English from January 1993 to October 2009. Articles about dynamical performance of tissue-engineered tendon, experimental research and clinical application of tissue-engineered tendon were included, but duplicated studies and Meta analysis were excluded. Among 36 articles, 4 major viewpoints were discussed: research progress of tendon tissue engineering; biodynamical analysis of tissue-engineered tendon stent materials; application of biomaterials for tendon tissue engineering; clinical application of tissue engineering for repairing tendon defect.
RESULTS: Natural polymer and synthetic macromolecule were major materials in tendon tissue engineering. The preparation and selection of stent materials depended on producing imitated materials with advanced performance and structure based on artificial synthetic materials, preparing natural derivative stent materials based on natural extracellular matrix, and constructing tissue-engineered tendon based on original bio-structure and bio-performance of biological tissue. Construction of tissue-engineered tendon must simulate three-dimensional physical environment in vivo. Microcomputer-controlled step motor was used to force tendon-matrix compound stent in order to increase proliferation velocity of tendon cells and secretory volume of collagen and develop into stress direction.
CONCLUSION: Physical stimulation is simple, thus technique and instrument for constructing artificial tendon need to be further studied. Additionally, living implants which may completely replace body tissue and organ function still need to be further studied and solved.

中图分类号: