[1] Olesen J, Kiilerich K, Pilegaard H. PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch.2010;460(1): 153-162.[2] Lin J, Handschin C, Spiegelman BM.Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabol.2005;1:361-370.[3] Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. PNAS.2001;98:3820-3825.[4] Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797-801.[5] Wenz T, Rossi S, Rotundo RL, et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging.PNAS. 2009;106:20405- 20410.[6] Calvo JA, Daniels TG, Wang X, et al. Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol.2008;104:1304-1312.[7] Arany Z, He L, Lin J. Transcriptional coactivator PGC-1αcontrols the energy state and contractile function of cardiac muscle. Cell Metabol.2005;1:259-271.[8] Handschin C, Choi CS, Chin S, et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic βcell crosstalk. J Clin Invest.2007;117:3463-3474.[9] Vega RB, Huss JM, Kelly DP.The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes.Mol Cell Biol. 2000; 20:1868-1876.[10] Wende AR, Schaeffer PJ, Parker GJ, et al. A role for the transcriptional coactivator PGC-1α in muscle refueling. J Biol Chem.2007;50:36642-36651.[11] Leick L, Hellsten Y, Fentz J, et al. PGC-1{alpha} mediates exercise-induced skeletal muscle VEGF expression in mice. Am J Physiol.2009;297:E92-E103.[12] Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDK's. Am J Physiol 2003;284: E855-E862.[13] Chinsomboon J,Ruas J,Gupta R, et al. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle.PNAS. 2009;106:21401- 21406.[14] Wende AR, Huss JM, Schaeffer PJ, et al. PGC-1αcoactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol.2005;25:10684-10694.[15] Constantin-Teodosiu D, Baker DJ, Constantin D, et al.PPARdelta agonism inhibits skeletal muscle PDC activity, mitochondrial ATP production and force generation during prolonged contraction. J Physiol.2009;587:231-239.[16] Leick L, Wojtaszewski JF, Johansen ST, et al. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol. 2008;294:E463-E474.[17] Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.Cell 1999;98:115-124.[18] Geng T, Li P,Okutsu M, et al.PGC-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol.2010;298:572-579.[19] Leick L, Lyngby SS, Wojtaszewski JFP,et al.PGC-1α is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscle. Exp Gerontol.2010;45:336-342.[20] St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators.Cell. 2006;127:397-408[21] St-Pierre J,Lin J,Krauss S,et al.Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem.2003;278:26597-26603.[22] Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature.2008; 454:463-469.[23] Handschin C, Chin S, Li P, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem.2007;282: 30014-30021.[24] Handschin C, Choi CS, Chin S, et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic βcell crosstalk.J Clin Invest.2007;117:3463-3474.[25] Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J.2002;16:1879-1886.[26] Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle.J Physiol. 2003;546:851-858.[27] Kusuhara K, Madsen K, Jensen L, et al. Calcium signaling in the regulation of PGC-1alpha, PDK4 and HKII mRNA expression. Biol Chem.2007;388:481-488.[28] Ojuka EO, Jones TE, Han DH, et al. Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J.2003;17:675-681.[29] Jorgensen SB, Wojtaszewski JFP, Viollet B, et al. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.FASEB J 2005;19:1146-1148.[30] Pilegaard H, Osada T, Andersen L, et al.Influence of substrate availability on transcriptional regulation of metabolic genes in human skeletal muscle. Metab. 2005;54:1048-1055.[31] Jager S, Handschin C, St-Pierre J, et al. AMPactivated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1{alpha}.PNAS 2007;104:12017- 12022.[32] Puigserver P, Rhee J, Lin J, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell.2001; 8:971-982.[33] Canto C, Gerhart-Hines Z, Feige JN, et al.AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity. Nature.2009;458:1056-1062.[34] Röckl KSC, Witczak CA, Goodyear LJ. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. Life.2008;60:145-153.[35] Jorgensen SB, Treebak JT,Viollet B, et al.Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4,hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol.2007;292:E331-E339.[36] Barres R, Osler ME, Rune A,et al. Non-CpG methylation of the PGC-1a promoter through DNMT3B controls mitochondrial density. Cell Metabol.2009;10:189-198.[37] Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol.2000;526:203-210. |