Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (31): 4926-4930.doi: 10.12307/2024.702
Previous Articles Next Articles
Zhao Wenjing, Liu Baikun, Li Qiulian, Chen Xi
Received:
2023-07-21
Accepted:
2023-09-28
Online:
2024-11-08
Published:
2024-01-22
Contact:
Chen Xi, Chief physician, Hepatobiliary Hospital of Jilin, Changchun 130062, Jilin Province, China
About author:
Zhao Wenjing, MD, Chief technician, Hepatobiliary Hospital of Jilin, Changchun 130062, Jilin Province, China
Supported by:
CLC Number:
Zhao Wenjing, Liu Baikun, Li Qiulian, Chen Xi. Effects of long-term subculture on biological characteristics of bone marrow mesenchymal stem cells[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4926-4930.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.2 骨髓间充质干细胞增殖能力 第5,10代骨髓间充质干细胞的生长曲线大体呈拉伸的“S”形。接种第1,2天为细胞生长潜伏期,第3-6天细胞增殖明显,第7天细胞生长变慢进入平台期。第15代骨髓间充质干细胞的增殖能力明显低于第5,10代。细胞周期检测结果显示,S期细胞比例从(12.58±1.62)%(第5代)减少到(11.02±1.74)% (第10代)和(5.53±1.12)% (第15代),各代次S期细胞比例差异有显著性意义(P < 0.05);G1期细胞比例从(79.24±3.18)%(第5代)增加到(84.32±6.25)% (第10代)和(87.69±5.62)% (第15代),第15代G1期细胞增加,但各代次G1期细胞比例差异无显著性意义(P > 0.05),见图2。"
2.3 骨髓间充质干细胞多向分化潜能 成脂诱导分化后油红O染色结果显示,第5,10,15代细胞阳性率分别为(40.8±2.0)%,(38.7±2.7)%和(34.5±1.9)%,差异无显著性意义(P > 0.05);成骨诱导分化后碱性磷酸酶染色结果显示,第5,10,15代细胞阳性率分别为(94.1±5.3)%,(83.4±7.3)%和(82.4±8.7)%,差异无显著性意义(P > 0.05);成软骨诱导分化后番红O染色结果显示,第5,10,15代细胞阳性率分别为(94.3±5.5)%,(86.2±8.8)%和(84.5±9.5)%,差异无显著性意义(P > 0.05);与第5,10代比较,第15代骨髓间充质干细胞诱导分化后细胞密度低,细胞间距较大,见图3。"
2.6 长期传代培养对骨髓间充质干细胞衰老的影响 β-半乳糖苷酶染色结果显示,第15代细胞β-半乳糖苷酶染色阳性率为(58.4±4.5)%,与第5代(4.2±1.7)%和第10代(19.4±3.3)%比较,差异有显著性意义(P < 0.05)。Western blot检测结果显示,第5代细胞p53蛋白的相对表达量为0.39±0.04,与第10代(0.80±0.05)和第15代(1.01±0.09)比较,差异有显著性意义(P < 0.05);第5代细胞p21蛋白的相对表达量为0.43±0.08,与第10代(1.06±0.16)和第15代(1.33±0.36)比较,差异有显著性意义(P < 0.05);第5代细胞p16蛋白的相对表达量为0.29±0.05,与第10代(0.90±0.04)和第15代(0.99±0.06)比较,差异有显著性意义(P < 0.05)。见图7。"
[1] SILINA E, STUPIN V, KOREYBA K, et al. Local and Remote Effects of Mesenchymal Stem Cell Administration on Skin Wound Regeneration. Pathophysiology. 2021; 28(3):355-372. [2] NGO ATL, LE HM, TRINH NTH, et al. Clinically relevant preservation conditions for mesenchymal stem/stromal cells derived from perinatal and adult tissue sources. J Cell Mol Med. 2021;25(22):10747-10760. [3] DABROWSKA S, ANDRZEJEWSKA A, STRZEMECKI D, et al. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation. 2019;16(1):216. [4] LIU Y, HOLMES C. Tissue Regeneration Capacity of Extracellular Vesicles Isolated From Bone Marrow-Derived and Adipose-Derived Mesenchymal Stromal/Stem Cells. Front Cell Dev Biol. 2021;9:648098. [5] ARTHUR A, GRONTHOS S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci. 2020;21(24):9759. [6] BALL AN, PHILLIPS JN, MCILWRAITH CW, et al. Genetic modification of scAAV-equine-BMP-2 transduced bone-marrow-derived mesenchymal stem cells before and after cryopreservation: An “off-the-shelf” option for fracture repair. J Orthop Res. 2019;37(6):1310-1317. [7] JIN L, LU N, ZHANG W, et al. Altered properties of human adipose-derived mesenchymal stromal cell during continuous in vitro cultivation. Cytotechnology. 2021;73(4):657-667. [8] LI X, WANG X, ZHANG C, et al. Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice. Cell Prolif. 2022;55(3):e13191. [9] GUO Y, CHI X, WANG Y, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 2020;11(1):245. [10] MANSELL E, SIGURDSSON V, DELTCHEVA E, et al. Mitochondrial Potentiation Ameliorates Age-Related Heterogeneity in Hematopoietic Stem Cell Function. Cell Stem Cell. 2021;28(2):241-256.e6. [11] COVARRUBIAS AJ, PERRONE R, GROZIO A, et al. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119-141. [12] KINCAID JW, BERGER NA. NAD metabolism in aging and cancer. Exp Biol Med (Maywood). 2020;245(17):1594-1614. [13] 张权,张亚奇,饶巍,等.长期传代培养对人脐带间充质干细胞生物学特性的影响[J].中国细胞生物学学报,2019,41(1):42-52. [14] 常铖,刘梦婷,张权,等.长期传代培养人脐带间充质干细胞免疫调节功能的比较[J].中国细胞生物学学报,2020,42(4):609-619. [15] RENGASAMY M, GUPTA PK, KOLKUNDKAR U, et al. Preclinical safety & toxicity evaluation of pooled, allogeneic human bone marrow-derived mesenchymal stromal cells. Indian J Med Res. 2016;144(6):852-864. [16] OO MW, KAWAI H, TAKABATAKE K, et al. Resident stroma-secreted chemokine CCL2 governs myeloid-derived suppressor cells in the tumor microenvironment. JCI Insight. 2022;7(1):e148960. [17] SAEEDI P, HALABIAN R, IMANI FOOLADI AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig. 2019;6:34. [18] LIU M, LEI H, DONG P, et al. Adipose-Derived Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with Senescent Properties. Cell Transplant. 2017;26(9):1505-1519. [19] AITHAL AP, BAIRY LK, SEETHARAM RN. Safety and therapeutic potential of human bone marrow-derived mesenchymal stromal cells in regenerative medicine. Stem Cell Investig. 2021;8:10. [20] HLADIK D, HÖFIG I, OESTREICHER U, et al. Long-term culture of mesenchymal stem cells impairs ATM-dependent recognition of DNA breaks and increases genetic instability. Stem Cell Res Ther. 2019;10(1):218. [21] TRUONG NC, BUI KH, VAN PHAM P. Characterization of Senescence of Human Adipose-Derived Stem Cells After Long-Term Expansion. Adv Exp Med Biol. 2019; 1084:109-128. [22] WAGNER DR, KARNIK S, GUNDERSON ZJ, et al. Dysfunctional stem and progenitor cells impair fracture healing with age. World J Stem Cells. 2019;11(6):281-296. [23] SEO Y, SHIN TH, AHN JS, et al. Human Tonsil-Derived Mesenchymal Stromal Cells Maintain Proliferating and ROS-Regulatory Properties via Stanniocalcin-1. Cells. 2020;9(3):636. [24] AI J, KETABCHI N, VERDI J, et al. Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways. Cancer Cell Int. 2019;19:329. [25] SHEN J, ZHU X, LIU H. MiR-483 induces senescence of human adipose-derived mesenchymal stem cells through IGF1 inhibition. Aging (Albany NY). 2020;12(15): 15756-15770. [26] LEE JE, KWON HJ, CHOI J, et al. Aging increases vulnerability to stress-induced depression via upregulation of NADPH oxidase in mice. Commun Biol. 2020;3(1):292. [27] WANG D, XIAO Q, ZHANG W, et al. Landscape of ubiquitination events that occur in host skin in response to tick (Haemaphysalis longicornis) bitten. Dev Comp Immunol. 2020;104:103572. [28] 麦丽萍,何国东,陈少贤,等.乙醛脱氢酶 3B1 在人骨髓间充质干细胞自然衰老过程中的表达[J].中国组织工程研究,2022,26(1):40-44. [29] 龙燕鸣,谢梦生,黄加洁,等.酪蛋白激酶 2 相互作用蛋白 1 调控骨质疏松大鼠骨髓间充质干细胞的成骨能力[J].中国组织工程研究,2023,27(6):878-882. |
[1] | Liu Xin, Hu Man, Zhao Wenjie, Zhang Yu, Meng Bo, Yang Sheng, Peng Qing, Zhang Liang, Wang Jingcheng. Cadmium promotes senescence of annulus fibrosus cells via activation of PI3K/Akt signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1217-1222. |
[2] | Song Wenxue, Liao Yidong, Ming Jiang, He Longcai, Chen Guangtang, Chen Chen, Wang Zili, Xiong Mingsong, Cui Junshuan, Xu Kaya. Intracranial transplantation of human bone marrow mesenchymal stem cells alleviates rat brain ischemia-reperfusion injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 5036-5041. |
[3] | Gao Jie, , , Zou Xingxing, Wen Banghong, Li Yuandi, Su Min, , , Hu Rong, , . Effect of Pax6 gene expression on hydrogen peroxide-induced aging in bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4921-4925. |
[4] | Chen Shuang, Xi Zhipeng, Wang Nan, Fang Xiaoyang, Liu Xin, Kang Ran, Xie Lin. Quercetin targets CCR1 and CXCR4 to promote migration of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4945-4950. |
[5] | Shi Weili, Liu Shanshan, Chang Hongbo, Gao Haixia, Wang Xinzhou, Qin Nan, Wu Hong. Vascular endothelial growth factor combined with basic fibroblast growth factor improves replicative senescence of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4958-4963. |
[6] | Zhang Chike, Wang Feiqing, Wu Dan, Yang Bo, Cheng Jinyang, Chen Juan, Tang Dongxin, Liu Yang, Li Yanju. Effects of conditioned medium of acute myeloid leukemia on biology of mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4995-5002. |
[7] | Lin Feng, Cheng Ling, Gao Yong, Zhou Jianye, Shang Qingqing. Hyaluronic acid hydrogel-encapsulated bone marrow mesenchymal stem cells promote cardiac function in myocardial infarction rats (III) [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 355-359. |
[8] | Bi Yujie, Ma Dujun, Peng Liping, Zhou Ziqiong, Zhao Jing, Zhu Houjun, Zhong Qiuhui, Yang Yuxin. Strategy and significance of Chinese medicine combined with medical hydrogel for disease treatment [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 419-425. |
[9] | Chen Xiangshan, Liu Hua, Sun Weikang, Li Huanan. Mechanism of m6A methylation regulating bone metabolism for prevention and treatment of osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(28): 4572-4577. |
[10] | Yang Qipei, Chen Feng, Cui Wei, Zhang Chi, Wu Ruiqi, Song Zhenheng, Meng Xin. Signaling pathways related to kaempferol active monomers in the treatment of osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(26): 4242-4249. |
[11] | Yang Shanshan, Ouyang Renjun, Tian Jia, Linghu Min, Wang Zhen, Yang Xiaohong. Detection of immune-related cytokines of bone marrow mesenchymal stem cells in postmenopausal osteoporosis mice by antibody chip and analysis of key differential genes [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(25): 3947-3954. |
[12] | Han Dunzheng, Qin Xiaozhou, Pan Xiudi, Lu Waner, Dai Ying, Chen Yanxun, Cheng Xianfei, Tang Muhan. Effect of apoptosis-inducing factor gene knockdown on bone marrow mesenchymal stem cell transplantation for myocardial infarction [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(25): 3967-3973. |
[13] | Zhang Min, Lou Guo, Fu Changxi. Aerobic exercise preconditioning improves therapeutic effect of bone marrow mesenchymal stem cells on acute myocardial infarction [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(25): 3988-3993. |
[14] | Yuan Xun, Ding Zhengang, Fu Liwei, Wu Jiang, Zheng Yazhe, Zhang Zhichao, Tian Guangzhao, Sui Xiang, Liu Shuyun, Guo Quanyi. Preparation and characterization of methacryloylated hyaluronic acid/acellular Wharton’s jelly composite hydrogel scaffold [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(22): 3517-3523. |
[15] | Yuan Changshen, Liao Shuning, Li Zhe, Wu Siping, Chen Lewei, Liu Jinyi, Li Yanhong, Duan Kan. Machine learning combined with bioinformatics to identify and validate key genes for cellular senescence in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(20): 3196-3202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||