Chinese Journal of Tissue Engineering Research ›› 2013, Vol. 17 ›› Issue (24): 4539-4544.doi: 10.3969/j.issn.2095-4344.2013.24.024
Previous Articles Next Articles
Wang Shi-yun1, Zhang Ruo-yu2, Liu Xue-hong1
Received:
2012-08-28
Revised:
2012-09-28
Online:
2013-06-11
Published:
2013-06-11
Contact:
Liu Xue-hong, Associate professor, Medical College of Shaoxing University, Shaoxing 312000, Zhejiang Province, China
lxh6588@yahoo.com.cn
About author:
Wang Shi-yun, Medical College of Shaoxing University, Shaoxing 312000, Zhejiang Province, China
2008wangshiyun@sina.com.cn
Supported by:
the “New Talents Plan” of Universities in Zhejiang Province, No. 2011R426020*; the Science and Technology Plan of Shaoxing City, No. 2009A33025*; the Science and Technology Plan of Zhejiang Province, No. 2012C33066*; the National Natural Science Foundation of China, No. 81100241*
CLC Number:
Wang Shi-yun, Zhang Ruo-yu, Liu Xue-hong. Effect and mechanism of nestin in the spinal cord development and injury repair process[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(24): 4539-4544.
2.1 巢蛋白 2.1.1 巢蛋白的分子结构 巢蛋白属第VI类中间丝蛋白,最初发现其表达在胚胎大鼠脊髓神经管神经前体细胞上,故又命名为神经上皮干细胞蛋白。巢蛋白的相对分子质量为210 000-240 000,其形成的纤维以一种波形分布方式聚集在神经干细胞(NSC)的细胞核周围[2]。 1990年Lendahl等[3]分离并鉴定了大鼠巢蛋白基因,发现巢蛋白基因的转录物不包含PolyA在内是5945bp。1992年Dahlstrand等[4]分离了人类的巢蛋白基因,通过检测结果的比较发现,人和大鼠巢蛋白基因在羧基端重复区域和内含子的位置保守性较高,并且3个内含子中的两个是与神经丝共享的,表明巢蛋白在从其他中间丝分离出来之后可能和神经丝来自同一祖先,而且是神经丝分支中最早分离出的一员。 小鼠巢蛋白的cDNA序列全长为5 983 bp,编码1 821个氨基酸,由4个外显子和3个内含子所组成,相对分子质量为240 kb ,3个内含子分别位于转录区域的912、1 038、1 111位置上,在+127和+160位置上存在2个潜在的起始密码子[5]。小鼠巢蛋白编码的多肽序列与大鼠、人类巢蛋白的同源性分别为84%和62%,并且都是单拷贝基因。 2.1.2 巢蛋白的表达调控机制 巢蛋白基因的第1个内含子具有调控骨骼肌母细胞表达巢蛋白的启动子和增强子,同时也是骨骼肌发育中转录因子的结合位点。第2个内含子则指导基因在发育的神经前体细胞中的表达,决定巢蛋白在中枢神经系统表达的结构元件就存在于第2个内含子的3’端保守区[6]。研究证明巢蛋白基因的第2个内含子具有2个分别决定巢蛋白在中枢神经系统和中脑表达的增强子[7]。在该增强子中,有一段30个碱基长的结构域(Nes30)有核心控件的特性,Nes30结构域包含有转录因子SOX和转录因子POU的结合位点。在Nes30中,能与转录因子SOX和转录因子POU的结合的基因序列对整个巢蛋白神经增强子起着关键性的作用。转录因子SOX和转录因子POU的协同作用在很大程度上反应了对巢蛋白神经增强子的调控。另外,巢蛋白的表达还受细胞周期蛋白素依赖性激酶(Cdk5)和甲状腺转录因子等调控,巢蛋白是上述因子在中枢神经系统发挥作用的一个重要的靶基因。 2.1.3 巢蛋白的生物学功能 作为一种中间丝蛋白,巢蛋白可以和微管、微丝一起构成细胞骨架从而维持神经前体细胞的正常形态。其在胚胎期的表达呈现时空性,随着神经细胞的不断成熟,巢蛋白表达强度逐渐减弱甚至消失。据报道, 巢蛋白和细胞骨架形成、细胞信号转导、细胞器发生、细胞新陈代谢等有关[8],并且代表干细胞增殖、迁移、分化的特性。巢蛋白还参与定位和运行亚细胞器,并用来调节骨架蛋白等功能多样的细胞增殖、生存和分化。巢蛋白阳性细胞为神经干细胞前体细胞,巢蛋白为神经干细胞的自我更新所需[9],故巢蛋白可用于分离、鉴别、培养神经干细胞,通过跟踪巢蛋白的表达来分析神经系统的发生过程。 在疾病的损伤修复和预后评估方面,巢蛋白同样发挥着重要的作用。巢蛋白能够在成人急性损伤反应期重新表达,参与中枢神经系统损伤后的胶质瘢痕形成、受损骨骼肌组织再生等。近年来研究显示巢蛋白也在上皮肿瘤中表达[10],比如胰腺癌、前列腺癌和乳腺癌,多数人认为检测肿瘤组织中巢蛋白的表达水平有助于评价肿瘤的生物学行为和患者的预后,即巢蛋白可作为疾病的诊断及预后情况的评估指标。另外,由于巢蛋白主要分布于大脑海马等区域,故巢蛋白还可能与人类的学习记忆有关。 2.2 巢蛋白与脊髓发育 2.2.1 巢蛋白与低等动物脊髓发育 巢蛋白对于低等动物神经系统尤其是脊髓发育具有关键的作用,不仅可以指导和调节神经元的发育方向,而且促进神经胶质细胞的合成与定向聚集。 斑马鱼是一种低等脊髓动物,它的基因与人类基因的相似度达到87%,是最适合的研究神经发育遗传和实验的模型生物,也是研究胚胎发育分子机制的优良资源。据报道,巢蛋白广泛表达于发育期斑马鱼的神经系统,局限表达于成年期斑马鱼的神经增殖区域[11]。巢蛋白预测氨基酸序列在斑马鱼与哺乳动物中具有同源直系性聚集。巢蛋白在斑马鱼胚胎的表达首次发现于受精后13 h,而在受精后24 h则分布到脑和脊髓。在该段时间内巢蛋白的表达对斑马鱼胚胎神经系统的发育至关重要[12]。Lam 等[13]报道巢蛋白基因还可用于身份识别和体内操纵那些在成年斑马鱼中枢神经系统内的干细胞。Fan 等[14]认为斑马鱼的巢蛋白基因谱可作为快速评价神经毒性化学物质的一种潜力生物标记物。 2.2.2 巢蛋白与哺乳动物脊髓发育 小鼠胚胎发育过程中,巢蛋白首先表达于神经板皮质细胞,随着神经细胞迁移的基本完成,神经前体细胞逐渐分化为神经元和神经胶质细胞,巢蛋白表达开始减弱直至停止,然后被神经丝蛋白和胶质纤维酸性蛋白所取而代之。 据报道小鼠出生后海马区发育时巢蛋白和胶质纤维酸性蛋白水平呈时空变化。在小鼠出生后1 d其海马区巢蛋白表达较高,并显著下降直至18 d。相反,在小鼠产后早期发展阶段胶质纤维酸性蛋白表达则敏锐地增加,这表明了巢蛋白和胶质纤维酸性蛋白在早期发育阶段的相反变化对小鼠中枢神经干细胞神经分化的定位起重要作用[15]。巢蛋白在脊髓背角主要分布于胶质层,中央管区则主要分布于室管膜,在腹侧,侧角,髓质,脊髓核区域巢蛋白相对较少。巢蛋白在成年小鼠各脊髓节段的分布依次为颈段多于腰骶段多于胸段,对于左,右两侧却不存在显著差异。这些数据表明,用检测巢蛋白的方法不仅可以发现神经前体细胞在成年小鼠的脊髓胶质层和室管膜区的分布情况,而且该区域的巢蛋白阳性细胞是神经干细胞的一种潜在来源[16]。 2.2.3 巢蛋白与人脊髓发育 人类神经前体细胞表达3种粘蛋白,可以分化为能够表达巢蛋白,MAP-2的不同类型的神经细胞和神经胶质细胞[17-18]。Keenan 等[19]认为,新生神经细胞不是通过人类神经前体细胞直接分化而成,而是由成纤维细胞生长因子可以影响的外加人类神经前体细胞区域实现。成纤维细胞生长因子和人类白血病抑制因子能成功地促进生成大量的人类神经前体细胞,而其又可以分化成GABA能神经细胞,被应用于治疗神经退化性疾 病[20-21]。Delaloy 等[22]发现脑组织特有的微小RNA-9基因可以调控人类胚胎干细胞源性神经前体细胞的增殖和迁移,实验观测到该基因表达高峰时,神经球的大部分细胞为巢蛋白和Sox2的强阳性表达。通过巢蛋白的含量测定和跟踪定位,不仅可以研究人类神经前体细胞增殖、分化、迁移规律,而且发现巢蛋白参与调控人胚胎脊髓神经细胞和神经胶质细胞的生长发育。研究发现第2-4个月龄段的人胚胎脊髓内均可见巢蛋白表达阳性的神经纤维分布,随着胎龄的增大,脊髓前角处巢蛋白阳性表达的神经前体细胞和神经胶质细胞呈先增多再降低的趋势,在后角则呈逐渐增高趋势[23]。 2.3 巢蛋白与脊髓损伤和修复 正常的胚胎发育过程中,随着神经细胞的不断成熟,巢蛋白表达逐渐下降直至停止。而在脊髓损伤等各种病理条件下,巢蛋白在反应性星形胶质细胞和神经元内的再表达,可作为中枢神经干细胞病变和损伤的诊断指标之一。巢蛋白具有与神经丝连接形成多聚体的能力,这表明其在促进中枢神经干细胞损伤后神经功能的恢复方面起着重要作用。 成年期室管膜细胞通常处于静止状态,只有在受损后才会应激而增生,一般是向星形胶质细胞分 化[24]。当脊髓损伤后,成人脑脊膜内的巢蛋白阳性表达细胞迅速增殖,逐步迁移至脊髓实质并分化为神经元和成熟的少突胶质细胞,参与神经胶质的瘢痕形成和修复[25]。Foret 等[26]发现体育锻炼可以提高室管膜细胞的增殖,促进功能恢复和自主排尿,保持巢蛋白在损伤和未损伤脊髓中的表达,与巢蛋白阳性细胞表达和运动功能恢复之间呈现正相关的关系。据报 道[27],成人脊髓来源的神经干细胞具有多能性和自我更新能力,脊髓损伤后移植的神经干细胞增殖表达巢蛋白和Sox2,同时促使神经细胞选择性分化和存活。Amoh 等[28]发现毛囊干细胞可以表达神经干细胞标记物即巢蛋白,表明它和神经干细胞有共同特征。巢蛋白阳性的毛囊多能干细胞移植可以帮助周围神经和脊髓损伤的再生和修复,是自身神经干细胞移植的重要来源。实验证明突起区域和真皮乳头的巢蛋白阳性毛囊多能干细胞移植至损伤脊髓可以分化为神经元和胶质细胞并且促进其损伤修复[29]。将人类胚胎干细胞来源的神经前体胶原蛋白支架移植入裸鼠脊髓,发现其神经母细胞高表达巢蛋白,同时向神经元和神经胶质多向分化,提高了成鼠脊髓损伤模型的后肢运动功能和感觉反应,促进大鼠脊髓损伤的恢复[30]。但也有研究认为,成体脊髓损伤行神经干细胞移植治疗后[31],神经干细胞在移植区开始较多分化成神经胶质细胞,限制了神经前体细胞生成。如何使神经干细胞更大程度地向神经前体细胞分化成了关注的问题。Matsumura等[32]通过对巢蛋白阳性细胞转基因小鼠的增殖背侧角周围神经损伤反应,提出ATP可能有助于神经前体细胞损伤后的巢蛋白的表达和激活。Guo等[33]通过对斑马鱼脊髓再生的相关研究,认为提高Sox11b在神经损伤后的内生神经干细胞中的增殖表达可能对哺乳动物的脊髓损伤后的再生治疗有帮助,因为Sox11b参与巢蛋白基因增强子的激活。另外,有学者从成体终丝中分离出神经干细胞[34],它们可以增殖分化为神经元、星形胶质细胞和少突胶质细胞。Gaddam等[35]通过实验发现终丝和包含神经纤维的神经根之间存在解剖上的联系,某些个体的终丝仍然保留有神经束和巢蛋白阳性细胞。这些都表明向来被认为无临床意义的终丝不仅可以固定脊髓,当脊髓在较低水平损伤时,也有可能依靠终丝内的巢蛋白阳性细胞即神经干细胞发挥功能性作用从而实现自我修复。"
[1] 南登崑.康复医学[M].北京:人民卫生出版社,2008:180.http://www.pmph.com/Page/index.jsp[2] 史冬梅,周畅,谢佐平.神经干细胞有丝分裂过程中nestin表达变化[J].神经解剖学杂志,2003(2):119-123. http://www.cqvip.com/QK/97897X/200302/9589149.html [3] Lendahl U,Zimmerman LB,McKay RD.CNS stem cells express a new class of intermediate filament protein.Cell. 1990;60(4):585-595.http://www.ncbi.nlm.nih.gov/pubmed/?term=CNS+stem+cells+express+a+new+class+of+intermediate+filament+protein [4] Dahlstrand J, Zimmerman LB, McKay RD,et al. Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments.Cell Sci.1992; 103(Part 2):589–597.http://www.ncbi.nlm.nih.gov/pubmed/1478958 [5] Gilyarov AV.Nestin in central nervous system cells.Neurosci Behav Physiol.2008;38(2):165-169.http://www.ncbi.nlm.nih.gov/pubmed/18197384 [6] Lothian C,Prakash N,Lendahl U,et al.Identification of both general and region-specific embryonic CNS enhancer elements in the nestin promoter.Exp Cell Res.1999;248(2):509-519.http://www.ncbi.nlm.nih.gov/pubmed/10222142 [7] Tanaka S, Kamachi Y,Tanouchi A,et al.Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells.Mol Cell Biol.2004;24(20):8834-8846.http://www.ncbi.nlm.nih.gov/pubmed/15456859 [8] Zhang M, Song T, Yang L,et al.Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients.J Exp Clin Cancer Res.2008;27(1):85-91.http://www.ncbi.nlm.nih.gov/pubmed/19108713 [9] Park D, Xiang AP, Mao FF, et al. Nestin is required for the proper self-renewal of neural stem cells.Stem Cells.2010; 28(12):2162-2171.http://www.ncbi.nlm.nih.gov/pubmed/20963821 [10] Dhingra S, Feng W, Brown RE, et al.Clinicopathologic significance of putative stem cell markers, CD44 and nestin, in gastric adenocarcinoma.Int J Clin Exp Pathol.2011;4(8): 733-741.http://www.ncbi.nlm.nih.gov/pubmed/22135720 [11] Mahler J, Driever W. Expression of the zebrafish intermediate neurofilament Nestin in the developing nervous system and in neural proliferation zones at postembryonic stages.BMC Dev Biol.2007;7:89.http://www.ncbi.nlm.nih.gov/pubmed/17651502 [12] Chen HL,Yuh CH,Wu KK.Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis.PLoS One.2010;5(2):e9318.http://pubget.com/paper/20174467/Nestin_is_essential_for_zebrafish_brain_and_eye_development_through_control_of_progenitor_cell_apoptosis [13] Lam CS,März M, Strähle U. Gfap and nestin reporter lines reveal characteristics of neural progenitors in the adult zebrafish brain.Dev Dyn.2009;238(2):475-486.http://www.ncbi.nlm.nih.gov/pubmed/19161226 [14] Fan CY,Cowden J,Simmons SO,et al.Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening. Neurotoxicol Teratol.2010;32(1):91-98.http://www.ncbi.nlm.nih.gov/pubmed/?term=Gene+expression+changes+in+developing+zebrafish+as+potential+markers+for+rapid+developmental+neurotoxicity+screening [15] Kim JS, Kim J, Kim Y, et al.Differential patterns of nestin and glial fibrillary acidic protein expression in mouse hippocampus during postnatal development. J Vet Sci.2011;12(1):1-6.http://www.ncbi.nlm.nih.gov/pubmed/?term=Differential+patterns+of+nestin+and+glial+fibrillary+acidic+protein+expression+in+mouse+hippocampus+during+postnatal+development [16] Xu R, Wu C, Tao Y, et al. Nestin-positive cells in the spinal cord: a potential source of neural stem cells.Int J Dev Neurosci. 2008;26(7):813-820. http://www.ncbi.nlm.nih.gov/pubmed/18611436 [17] Alexanian AR,Svendsen CN,Crowe MJ,et al.Transplantation of human glial-restricted neural precursors into injured spinal cord promotes functional and sensory recovery without causing allodynia.Cytotherapy.2011;13(1):61-68.http://www.ncbi.nlm.nih.gov/pubmed/?term=Transplantation+of+human+glial-restricted+neural+precursors+into+injured+spinal+cord+promotes+functional+and+sensory+recovery+without+causing+allodynia [18] Yoo CJ, Yoo YM, Kim YJ,et al. The identification of proteoglycan, collagen and neuron in precursor cells from human fetal spinal cord.Neurosci Lett.2009;457(3):151-154.http://www.ncbi.nlm.nih.gov/pubmed/19429183 [19] Keenan TM, Nelson AD, Grinager JR, et al. Real time imaging of human progenitor neurogenesis. PLoS One.2010;5(10): e13187.http://www.ncbi.nlm.nih.gov/pubmed/20949053 [20] Baghbaderani BA, Mukhida K, Sen A,et al. Bioreactor expansion of human neural precursor cells in serum-free media retains neurogenic potential.Biotechnol Bioeng.2010; 105(4):823-833.http://www.ncbi.nlm.nih.gov/pubmed/19882735 [21] Zhang H, Wang Y, Zhao Y, et al.Immortalized human neural progenitor cells from the ventral telencephalon with the potential to differentiate into GABAergic neurons. J Neurosci Res.2008;86(6):1217-1226.http://www.ncbi.nlm.nih.gov/pubmed/?term=Immortalized+human+neural+progenitor+cells+from+the+ventral+telencephalon+with+the+potential+to+differentiate+into+GABAergic+neurons [22] Dlaloy C,Liu L,Lee JA,et al.MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors.Cell Stem Cell.2010;6(4): 323-335.http://www.ncbi.nlm.nih.gov/pubmed/?term=MicroRNA-9+coordinates+proliferation+and+migration+of+human+embryonic+stem+cell-derived+neural+progenitors[23] 张泳,刘学红.微管相关蛋白2和巢蛋白在人胚胎脊髓的表达[J]. 解剖学报,2011,42(6):832-835.http://www.cqvip.com/QK/91154X/201106/40105328.html [24] Sharp J,Frame J,Siegenthaler M,et al.Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury.Stem Cells. 2010;28(1):152-163.http://www.ncbi.nlm.nih.gov/pubmed/?term=Human+embryonic+stem+cell-derived+oligodendrocyte+progenitor+cell+transplants+improve+recovery+after+cervical+spinal+cord+injury [25] Decimo I, Bifari F, Rodriguez FJ,et al.Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction.Stem Cells.2011;29(12):2062-2076.http://www.ncbi.nlm.nih.gov/pubmed/?term=Nestin-+and+doublecortin-positive+cells+reside+in+adult+spinal+cord+meninges+and+participate+in+injury-induced+parenchymal+reaction [26] Foret A, Quertainmont R, Botman O, et al.Stem cells in the adult rat spinal cord: plasticity after injury and treadmill training exercise.J Neurochem,2010,112(3):762-772.http://www.ncbi.nlm.nih.gov/pubmed/?term=Stem+cells+in+the+adult+rat+spinal+cord%3A+plasticity+after+injury+and+treadmill+training+exercise [27] Mothe AJ, Zahir T, Santaguida C, et al.Neural stem/progenitor cells from the adult human spinal cord are multipotent and self-renewing and differentiate after transplantation.PLoS One. 2011;6(11):e27079. http://www.ncbi.nlm.nih.gov/pubmed/?term=Neural+stem%2Fprogenitor+cells+from+the+adult+human+spinal+cord+are+multipotent+and+self-renewing+and+differentiate+after+transplantation [28] Amoh Y,Aki R,Hamada Y,Niiyama S,et al.Nestin-positive hair follicle pluripotent stem cells can promote regeneration of impinged peripheral nerve injury.J Dermatol.2012;39(1):33-38.http://www.ncbi.nlm.nih.gov/pubmed/?term=Nestin-positive+hair+follicle+pluripotent+stem+cells+can+promote+regeneration+of+impinged+peripheral+nerve+injury [29] Liu F, Uchugonova A, Kimura H,et al.The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla.Cell Cycle.2011;10(5):830-839.http://www.ncbi.nlm.nih.gov/pubmed/?term=The+bulge+area+is+the+major+hair+follicle+source+of+nestin-expressing+pluripotent+stem+cells+which+can+repair+the+spinal+cord+compared+to+the+dermal+papilla [30] Hatami M, Mehrjardi NZ, Kiani S, et al.Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy. 2009;11(5):618-630.http://www.ncbi.nlm.nih.gov/pubmed/?term=Human+embryonic+stem+cell-derived+neural+precursor+transplants+in+collagen+scaffolds+promote+recovery+in+injured+rat+spinal+cord [31] Ronaghi M, Erceg S, Moreno-Manzano V, et al.Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells.Stem Cells.2010;28(1):93-99.http://www.ncbi.nlm.nih.gov/pubmed/19904738 [32] Matsumura S, Takagi K, Okuda-Ashitaka E, et al. Characterization of nestin expression in the spinal cord of GFP transgenic mice after peripheral nerve injury. Neuroscience. 2010;170(3):942-953.http://www.ncbi.nlm.nih.gov/pubmed/?term=Characterization+of+nestin+expression+in+the+spinal+cord+of+GFP+transgenic+mice+after+peripheral+nerve+injury [33] Guo Y, Ma L, Cristofanilli M, et al.Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience.2011;172: 329-341. http://www.ncbi.nlm.nih.gov/pubmed/20951776 [34] Varghese M, Olstorn H, Berg-Johnsen J,et al.Isolation of human multipotent neural progenitors from adult filum terminale.Stem Cells Dev.2009; 18(4):603-613.http://www.ncbi.nlm.nih.gov/pubmed/18652547 35 Gaddam SS, Santhi V, Babu S,et al.Gross and microscopic study of the filum terminale: does the filum contain functional neural elements?.J Neurosurg Pediatr.2012;9(1):86-92.http://www.ncbi.nlm.nih.gov/pubmed/22208327 |
[1] | Jiang Hongying, Zhu Liang, Yu Xi, Huang Jing, Xiang Xiaona, Lan Zhengyan, He Hongchen. Effect of platelet-rich plasma on pressure ulcers after spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1149-1153. |
[2] | Wu Xun, Meng Juanhong, Zhang Jianyun, Wang Liang. Concentrated growth factors in the repair of a full-thickness condylar cartilage defect in a rabbit [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1166-1171. |
[3] | Zeng Zhen, Hu Jingwei, Li Xuan, Tang Linmei, Huang Zhiqiang, Li Mingxing. Quantitative analysis of renal blood flow perfusion using contrast-enhanced ultrasound in rats with hemorrhagic shock during resuscitation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1201-1206. |
[4] | Chai Le, Lü Jianlan, Hu Jintao, Hu Huahui, Xu Qingjun, Yu Jinwei, Quan Renfu. Signal pathway variation after induction of inflammatory response in rats with acute spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1218-1223. |
[5] | Chen Jiming, Wu Xiaojing, Liu Tianfeng, Chen Haicong, Huang Chengshuo. Effects of silymarin on liver injury and bone metabolism induced by carbon tetrachloride in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1224-1228. |
[6] | Luo Lin, Song Naiqing, Huang Jin, Zou Xiaodong. Review and prospect of international research on preschool children’s movement development assessment: a CiteSpace-based visual analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1270-1276. |
[7] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[8] | Wan Ran, Shi Xu, Liu Jingsong, Wang Yansong. Research progress in the treatment of spinal cord injury with mesenchymal stem cell secretome [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1088-1095. |
[9] | Liao Chengcheng, An Jiaxing, Tan Zhangxue, Wang Qian, Liu Jianguo. Therapeutic target and application prospects of oral squamous cell carcinoma stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1096-1103. |
[10] | Xie Wenjia, Xia Tianjiao, Zhou Qingyun, Liu Yujia, Gu Xiaoping. Role of microglia-mediated neuronal injury in neurodegenerative diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1109-1115. |
[11] | Kong Desheng, He Jingjing, Feng Baofeng, Guo Ruiyun, Asiamah Ernest Amponsah, Lü Fei, Zhang Shuhan, Zhang Xiaolin, Ma Jun, Cui Huixian. Efficacy of mesenchymal stem cells in the spinal cord injury of large animal models: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1142-1148. |
[12] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[13] | Wang Feng, Zhou Liyu, Saijilafu, Qi Shibin, Ma Yanxia, Wei Shanwen. CaMKII-Smad1 promotes axonal regeneration of peripheral nerves [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1064-1068. |
[14] | Zheng Xiaolong, He Xiaoming, Gong Shuidi, Pang Fengxiang, Yang Fan, He Wei, Liu Shaojun, Wei Qiushi. Bone turnover characteristics in patients with alcohol-induced osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 657-661. |
[15] | Pan Qile, Zhang Hong, Zhou Huikang, Cai Guang. Comparison of the Greulich-Pyle method, the CHN method and the China 05 method for assessing bone age in children and adolescents [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 662-667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||