Chinese Journal of Tissue Engineering Research ›› 2013, Vol. 17 ›› Issue (17): 3148-3155.doi: 10.3969/j.issn.2095-4344.2013.17.015
Previous Articles Next Articles
Liu Jing-feng1, Feng Jian-min2
Received:
2012-11-03
Revised:
2012-12-17
Online:
2013-04-23
Published:
2013-04-23
Contact:
Feng Jian-min, Chief physician, Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
fengjm_cn@yahoo.com
About author:
Liu Jing-feng★, Master, Attending physician, Shanghai Institute of Traumatology and Orthopedics, Shanghai 200025, China
liujingfenghm@hotmail.com
CLC Number:
Liu Jing-feng, Feng Jian-min. Hip squeaking after ceramic-on-ceramic total hip arthroplasty[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(17): 3148-3155.
2.1 异响声的性质和发生率 实际上全髋关节置换后出现髋关节异响声并不是什么新问题,早在1950年的Judet丙烯酸半髋置换术后就有报道[6],之后在较早的陶瓷对陶瓷假体以及金属对金属假体中也有发生[7-8]。新一代陶瓷对陶瓷界面上也发生了异响声,而且它的发生率随着报道越来越多。目前来讲,髋关节异响声的定义是笼统的,泛指出现的所有声响。其中研究较多的是啸叫声(Squeaking),它是指在全髋关节置换后患者在髋关节活动中出现的高声调而且可以被人们听见的声音。Sariali等[9]研究发现患者术后发生啸叫声的频率有两种,一种是行走时出现的,频率在2.24-2.46 kHz间;另一种是在坐姿起立时出现的,频率在1.45 kHz。前者的频率与体外模拟实验测得的频率接近(2.6 kHz)。该研究暗示啸叫声的产生可能有两种不同的机制。在研究假体界面的摩擦分析中和患者的描述中还出现了一些其他的声音,包括咔嗒音(clicking),爆音(popping),沉闷的金属音(clunking)和磨牙音(grinding)[10]。Kuo等[11]研究了使用第3代陶瓷对陶瓷假体进行全髋关节置换的125例患者,平均随访4.2年,共有8例(6.4%)患者出现髋关节异响,其中4例患者是咔嗒音(clicking),2例患者是磨牙音(grinding),2例患者是弹响音(snapping)。 异响声在陶瓷界面的发生率不同的报道也不一致,Choi 等[12]的研究中显示168例氧化铝陶瓷全髋置换中有8例出现异响声,发生率为4.8%,有的研究报道发生率介于3%至11%之间[13-14],而有的报道则高达17%左右[15]。异响声在金属对金属界面上的发生率据Back等[16]报道为3.9%,Hing等[17]报道为5.3%,而Ebied等[18]报道则高达10%左右。Schroder等[19]认为有些研究报道的髋关节术后异响发生率之所以那么低,是因为在患者随访时异响声有可能被低估了。因为如果异响声是在日常生活中间歇性出现的话,那么在临床随访时可能并不发出异响声,而患者又不会主动说出异响声的相关情况,这样有些作者报道的发生率就自然而然下降了。因此建议临床医生在随访时要有一个基于患者的量表来进行评估和判断。 Swanson等[20]提出在患者随访时将异响声分为频度和响度两个方面进行评估。他们建议把异响频度分为4个等级:Ⅰ级,表示异响的发生率小于每周1次;Ⅱ级,表示异响每周发生大于1次,少于4 次;Ⅲ级,指异响每周发生多于4 次,但并不是每天发生;而Ⅳ级是指异响声每天都会出现。异响声的响度也建议分为4个等级:A级,髋关节异响声只有患者能听到,而别人听不到;B级,指异响声有时能被别人听到;C级,表示异响声总是能被别人听到;D级,指异响声影响到患者正常的社交活动,令患者感到很尴尬,害怕引起别人的注意。这种评估综合考虑了异响声的频率和响度,在临床工作中值得使用。 2.2 异响声的危险因素 Baek[21]和Walter等[22]认为,异响声的相关因素可能包括患者因素,手术因素和假体因素。William[13]和Stanat[23]都认为异响声倾向于在身材较高,体质量较重和年纪较轻的患者中发生。某些特殊姿势和动作,如步行,屈髋动作和从座位站起身则容易发生异响声。Chevillotte等[24]对100例陶瓷对陶瓷全髋关节置换的患者随访10年发现有5例患者出现髋关节异响,但髋关节功能评分与髋关节无异响的患者差不多,假体位置也良好、没有磨损,也没有松动,但他们都是爱运动、活动量大和体质量大的患者,除此之外没有发现其他因素与髋关节异响相关。 对于身材和体型相对较小的亚洲人群而言,Chen等[25]在2003至2009年期间,进行了413例陶瓷对陶瓷全髋关节置换术。手术都由同一位医生主刀完成,采用改良前外侧小切口微创入路,随访时间至少2年,随访时都进行了患者问卷调查和临床体检,没有发现髋关节异响。Haq等[26]对1002例陶瓷对陶瓷全髋关节置换的回顾性研究发现髋关节异响与较高的体质量指数(BMI)和肢体短缩有关。Walter等[22]报道了1例同时使用ABG Ⅱ陶瓷对陶瓷界面进行双侧全髋关节置换的患者,患者抱怨在行走时右髋出现异响声,通过骨盆CT平扫可以发现患者右侧髋臼侧假体前倾角较大,达到42°;而左侧髋臼侧假体前倾角是24°,属于正常范围内。同时他们的研究还表明,对于陶瓷对陶瓷界面而言,如果髋臼侧假体在安置时俯倾角超过正常范围(45±10)°,或前倾角超过正常范围(25±10)°,那么术后患者发生髋关节异响声的风险要比假体安置正常范围内的高29倍。 Bernasek等[7]研究了539例使用金属对金属界面假体进行全髋关节置换的患者(542髋),发现如果髋臼假体俯倾角增大,发生髋关节异响的风险就越大,此外,女性患者比男性患者更容易出现髋关节异响。Swanson等[20]的研究表明,在对不能耐受髋关节异响的患者进行翻修手术过程中,发现由于某些金属髋臼杯的高边设计,可以看到有些假体股骨颈和髋臼杯间有金属撞击痕迹,有些假体甚至在股骨颈和髋臼杯缘上有明显的切迹形成,说明股骨颈假体以撞击处为杠杆支点,最终导致陶瓷内衬翘出,形成边缘负荷和严重的斑纹磨损。 Parvizi等[27]的研究了2002到2009年期间,在他们临床中心开展的1 507例全髋关节置换术,有92例患者出现髋关节异响,有趣的是发生髋关节异响的所有患者均使用了高边设计的金属髋臼杯假体,而且并没有发现其他因素与髋关节异响有关。所以他们认为高边的钛髋臼杯导致的撞击可能是此类假体设计产生髋关节异响的危险因素。这种解释似乎很有说服力,然而最近Buttaro等[28]的报道使得研究者又不敢轻易的过早下结论。他们报道了1例术后23个月出现髋关节异响的患者,而该患者使用的是BIOLOX® delta (CeramTec AG, Plochingen, Germany)陶瓷界面且非高边设计的金属髋臼杯假体,这显然暗示高边设计的髋臼金属杯假体和股骨颈假体之间产生的撞击不是产生髋关节异响的必要条件,除此之外还有其他因素会导致髋关节异响。 Yang等[29]认为,全髋关节置换术后异响声的发生是由金属对金属撞击产生的磨损碎片造成的。在承重界面中,匹配的髋臼假体陶瓷内衬的内径和陶瓷股骨头的外径实际上是有细微差别的,所以在头-臼间会产生径向间隙,称之为余隙(Clearance)。陶瓷对陶瓷界面的理想径向间隙介于50-100 μm之间,这样能形成正常的润滑机制。如果大号髋臼配小号股骨头就会影响并破坏正常的润滑机制,可能会产生异响声。Morlock等[30]报道了1例出现异响声的患者,该患者使用了氧化锆陶瓷股骨头和氧化铝陶瓷髋臼内衬,所以他们认为使用不同厂家生产的不同材料界面和异响声有关。 Swanson等[20]通过研究发现,使用Trident髋臼假体似乎异响声的发生率较高,尤其是Accolade股骨柄配Trident髋臼杯的异响声发生率为35.6%;使用颈部较窄、Beta钛合金假体的异响声发生率也较高。他们的研究同时发现使用刚度较低的材料容易发生异响声,这可能由于材料的弹性较大,啸叫可能与材料的共振有关。Restrepo等[31]发现股骨柄合金材料不同、柄和颈部的几何设计不同对于全陶界面全髋关节置换的异响声发生率有影响。使用标准钛合金 (TiAl6V4) 股骨侧假体的异响声发生率为2.6%,而使用Beta 钛合金 (12%钼, 6%锆, 2%铁) 股骨侧假体的异响声发生率高达18.4%,两组比较差异具有显著性意义(P < 0.000 1)。Keurentjes等[32]研究发现使用-4 mm或更短的短颈假体是全陶髋关节假体术后发生异响声的风险因素。Ranawat等[33]认为髋关节假体头臼微分离或半脱位会导致髋关节异响声。Toni等[34]认为髋关节响声可能是内衬破碎和碎片或股骨头斑纹磨损的早期临床征象。在一项体外试验中,Chevillotte等[35]发现关节干涩缺少润滑可以产生啸叫声。 2.3 异响声的发生机制 任何声音从本质上说都是一种特定频率的声波,异响声也不例外。任何听力范围内的声响都是由强迫振动(forced vibration)产生的,因此,对陶瓷髋关节假体异响声的研究就转到了对陶瓷髋关节假体的振动特点的研究与分析。强迫振动包括驱动力(driving force)和动态响应(dynamic response )。目前认为驱动力应该是由坚硬的界面物质产生摩擦振动力,而动态响应则应该来自髋关节某部分的共振,但后者仍需进一步确认。边缘负荷,撞击,第三体颗粒,金属粉末在陶瓷上残留,界面破坏,润滑液性状改变都可造成液膜润滑中断。而液膜润滑中断使得负荷界面直接接触,它们间的相对运动造成摩擦。 边缘负荷明显减少界面接触面积,因而使接触应力显著增加,导致了具有特征性的斑纹磨损(stripe wear)。通过对磨损区域的研究发现[36],髋关节深度屈曲时边缘负荷位于后方,髋关节伸直时边缘负荷位于前上方。之前提及的许多患者在特定体位或动作下才会出现异响声,例如行走或屈髋下出现,这种现象与边缘负荷的研究相一致。此外,对因异响声而行髋关节翻修的手术中发现假体界面有边缘负荷的磨损证据。 Walter等[37]将12例髋关节异响患者的陶瓷界面取出后研究发现无一例外都出现具有特征性的边缘负荷磨损,陶瓷股骨头的平均容积磨损率是2.9 mm3/年(正常值0.1 mm3/年),陶瓷内衬的平均容积磨损率是3.4 mm3/年(正常值0.04 mm3/年),每对陶瓷界面的平均容积磨损率是6.3 mm3/年,是髋关节无异响陶瓷界面磨损率的45倍。模拟步行的体外研究发现[38],在出现边缘负荷磨损的情况下,循环负荷(模拟行走)可以出现异响声。临床上,异响声常常于髋关节置换术后6-26个月才发生[22],边缘负荷需要一定时间才能产生斑纹磨损,这也证实了斑纹磨损与发生异响声有一定的关联。临床上髋臼假体俯倾角增大就有可能导致边缘负荷,加快磨损,而且随着时间延长,会逐渐增加陶瓷界面的摩擦因数。 股骨颈侧金属撞击会产生杠杆效应,导致股骨头潜在半脱位,这也会导致边缘负荷。Restrepo等[39]通过术中对假体的研究分析发现在斑纹磨损区域对侧,66%的髋臼假体存在髋臼缘侧的金属切迹,提示撞击可以造成斑纹磨损。但金属撞击并不是造成异响声的惟一因素,毕竟有一部分患者只是在行走时才出现异响声,而行走时很难发生金属撞击。 第三体颗粒主要是指金属磨损碎屑和陶瓷颗粒,前者是由金属撞击造成的[39]。通过电镜扫描研究发现,陶瓷股骨头上的金属条带就是钛金属沉着造成的[36]。Stea等[40]的研究发现,在髋关节异响患者的关节液中通过微量分析发现有大量的陶瓷磨损颗粒。 润滑机制在髋关节异响声的发生中起到重要作用。在一项体外实验中模拟了不同的界面条件和载荷条件[35],在没有润滑的条件下,不同的界面间都出现了异响声。当有润滑机制存在时,则没有出现异响声。更有趣的是,在有金属颗粒附着的陶瓷股骨头组,在加入润滑条件后,异响声在股骨头活动30个循环后就消失了。在一项金属-金属界面的体外研究发现:在高浓度血清和较厚润滑液膜状态下[41],异响声的发生率较低。 Weiss等[42]和 Walter等[43] 指出高摩擦因数是由陶瓷界面的润滑中断造成的,高摩擦因数会导致陶瓷髋关节假体系统的振动不稳定,这样就产生了异响。如果陶瓷界面间的液膜润滑机制工作良好的话,陶瓷界面的摩擦因数只有0.001 8-0.003 2 [44],边缘负荷条件下摩擦因数是正常状态下的3-6倍,但仍然维持在大约0.1,与金属对金属界面的摩擦因数相当。在边缘负荷状态下再加入氧化铝陶瓷颗粒(即第三体颗粒),摩擦因数将会升高到理想状态下的几十倍,甚至高达0.53[45],并出现间歇性的髋关节异响。 动态响应(dynamic response)来自于髋关节假体的共振,而共振与假体的固有频率相关。假体设计是发生异响的所有风险中比较重要因素之一[31]。有研究来分析髋关节异响声的频率和特点[13],分析表明某些假体部件的共振会产生声响。这些共振取决于假体本身的固有频率,研究发现陶瓷股骨头和陶瓷内衬的固有频率和共振频率在人耳的听力范围之外。单独股骨柄或金属髋臼杯的共振频率在人耳听力范围之内,而安装正确的金属髋臼杯和陶瓷内衬产生的共振并不在人耳听力范围之内[13]。基于这些发现,可以认为正确安装的髋臼陶瓷内衬和髋臼金属杯不会产生异响声。所以,合适的假体设计和稳定的髋臼杯-内衬扣锁机制设计对于消除听力范围为的共振现象非常重要。目前已经出现采用特殊生产工艺将一体化陶瓷臼衬嵌入金属外杯内,以避免术中植入陶瓷臼衬过程中出现不匹配而导致的异响并发症。 有限元分析显示,金属杯与陶瓷内衬的刚度不一致[13],在边缘负荷的情况下,金属杯发生形变,干扰了它与陶瓷内衬的正常锥形嵌合机制,陶瓷内衬在金属杯内发生倾斜,这就为金属杯发生共振创造了有利条件。越薄、越大的金属杯产生声响的频率越低,它正好在人的听力范围内[13]。异响声和股骨柄假体颈部直径以及弯曲刚度间的关系如下:股骨柄假体颈部越细、弯曲刚度越低的股骨柄假体越是能产生在人的听力范围内的共振频率[31]。既然股骨侧假体的扭转振动和弯曲振动与异响有关,那么假体柄可能对异响的产生起到更大的作用。Hothan等[46]研究发现股骨柄假体设计对异响声特征及其发生率的影响至关重要,证实并解释了临床现象。髋臼杯设计对整个系统的动态行为没有明显影响,但对摩擦大小起到间接作用。只有关节界面摩擦大小足以产生人耳听力范围内的振动时,异响声才能出现。如果摩擦太小,就不会有异响发生。前文所述的Restrepo等[31]指出植入钛钼锆铁合金材料的股骨柄假体患者异响的发生率是植入钛铝钒合金材料的股骨柄假体患者的7倍。Glaser等[47]研究指出由于聚乙烯内衬会帮助消散振动所需的能量,陶瓷对陶瓷和金属对金属假体比起陶瓷对聚乙烯和金属对聚乙烯假体向周围组织振动的形成提供了更多的能量。因此,超高分子聚乙烯被选为陶瓷对陶瓷假体系统的阻尼。例如目前市场上BIOLOX® DUO,它是第1个全陶瓷双动头系统,包括BIOLOX® forte外罩,BIOLOX® forte球头或者BIOLOX® delta球头,和做为阻尼的聚乙烯固定卡环。 2.4 处理和预防 髋关节置换术后异响声往往是间歇性出现的,且有时会被别人听到,属于频度Ⅰ级,响度B级。因此大多数患者通常能够忍受。Sexton等[48]研究表明髋关节有无异响声对患者满意度和髋关节功能评分无统计学差异。所以没有髋关节疼痛且功能良好的患者只需密切观察和随访,不需要特殊治疗。然而还是有极少的患者因不堪忍受异响声的响度或频度而需髋关节翻修手术干预。出现髋关节异响的患者在随访时需要进行临床评估和影像学检查,影像学除了常规的髋关节正侧位片和骨盆平片外,还需行髋关节CT检查。建议CT检查的原因是因为平片上有时很难发现陶瓷内衬或陶瓷股骨头破裂,并且从CT平扫上医生可以很准确地判断髋臼侧假体的位置,即前倾和俯倾情况。影像学上无异常的患者,如果偶尔出现异响且无髋关节疼痛,则告诉患者可以继续密切随访。异响经常出现或持续存在的患者,如果严重影响患者的生活质量和社交活动,或出现髋关节疼痛,可考虑行髋关节翻修手术。如果影像学上发现有假体失败,陶瓷破裂或假体位置不良等情况则具有手术干预的强烈指征。在髋关节翻修手术中应该再次确认和寻找产生异响声的原因,并予以纠正,包括纠正假体的不良位置,消除撞击情况,调节软组织张力,以及更换新的陶瓷-陶瓷界面或陶瓷-超高分子聚乙烯界面。 Matar等[49]对11例髋关节异响患者进行了翻修术,所有患者的头-臼假体都从陶瓷对陶瓷界面更换成为金属对高交联聚乙烯界面。患者平均年龄45.5岁,平均体质量指数30.0 kg/m2,术后髋关节异响全部消失,SF-36评分、WOMAC指数和Harris髋关节评分有明显改善且有统计学差异(P < 0.05)。但不管怎样,最佳的方案首先还是在于预防,即应避免髋关节异响的发生。在全髋关节置换中,医生要确认髋臼侧假体应置于俯倾45°及前倾25°的位置;切除前方、内侧过多的关节囊,修整股骨近端前方皮质的隆起,注意股骨假体柄的前倾以避免撞击;安放假体后要术中测试髋关节活动度,确保股骨头-髋臼的中心负荷,而不是边缘负荷;通过颈的长短和偏心距的选择调整软组织张力,防止半脱位;假体组件必须正确安装牢靠;冲洗关节腔,避免游离体残留、陶瓷界面刮擦和碎裂。"
[1] Zywiel MG, Sayeed SA, Johnson AJ, et al. State of the art in hard-on-hard bearings: how did we get here and what have we achieved? Expert Rev Med Devices.2011;8(2):187-207. [2] D'Antonio JA, Capello WN, Naughton M.Ceramic bearings for total hip arthroplasty have high survivorship at 10 years. Clin Orthop Relat Res. 2012;470(2):373-381. [3] Boutin P.Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Rev Chir Orthop Reparatrice Appar Mot.1972;58(3):229-246.[4] Knahr K, Böhler M, Frank P,et al.Survival analysis of an uncemented ceramic acetabular component in total hip replacement. Arch Orthop Trauma Surg. 1987;106(5):297-300.[5] Boutin P, Blanquaert D.A study of the mechanical properties of aluminaon- alumina total hip prosthesis (author’s transl). Rev Chir Orthop Reparatrice Appar Mot.1981;67(3):279-287.[6] Amstutz HC.Evolution of hip arthroplasty,in Amstutz HC,ed: Hip Arthroplasty.New York,NY,Churchill Livingstone,1991.[7] Bernasek T, Fisher D, Dalury D, et al.Is metal-on-metal squeaking related to acetabular angle of inclination? Clin Orthop Relat Res.2011;469(9):2577-2582.[8] Esposito C,Walter WL,Campbell P, et al.Squeaking in metal-on-metal hip resurfacing arthroplasties. Clin Orthop Relat Res. 2010;468(9):2333-2339.[9] Sariali E, Jin Z, Stewart T, et al. Spectral characterization of squeaking in ceramic-on-ceramic total hip arthroplasty: comparison of in vitro and in vivo values. J Orthop Res.2012; 30(2):185-189.[10] Jarrett CA, Ranawat AS, Bruzzone M,et al.The squeaking hip: A phenomenon of ceramic-on-ceramic total hip arthroplasty.J Bone Joint Surg Am 2009;91(6):1344-1349.[11] Kuo FC, Liu HC, Chen WS, et al.Ceramic-on-ceramic Total Hip Arthroplasty: Incidence and Risk Factors of Bearing Surface-related Noises in 125 Patients. Orthopedics. 2012;35 (11):e1581-1585.[12] Choi IY, Kim YS, Hwang KT, et al.Incidence and factors associated with squeaking in lumina-on-alumina THA. Clin Orthop Relat Res.2010;468(12):3234-3239.[13] Walter WL, Waters TS, Gillies M,et al.Squeaking hips. J Bone Joint Surg Am,2008;90 (Suppl.4):102-111.[14] Cogan A, Nizard R, Sedel L. Occurrence of noise in alumina-on-alumina total hip arthroplasty. A survey on 284 consecutive hips. Orthop Traumatol Surg Res. 2011;97(2): 206-210.[15] Mai K,Verioti C,Ezzet KA,et al.Incidence of ‘squeaking’ after ceramic-on-ceramic total hip arthroplasty. Clin Orthop Relat Res.2010;468(2):413-417.[16] Back DL, Dalziel R, Young D, et al. Early results of primary Birmingham hip resurfacings: An independent prospective study of the first 230 hips. J Bone Joint Surg Br.2005;87(3): 324-329.[17] Hing CB, Back DL,Bailey M,et al.The results of primary Birmingham hip resurfacings at a mean of five years: An indepentent prospective review of the first 230 hips. J Bone Joint Surg Br.2007;89(11):1431-1438.[18] Ebied A,Journeaux S.Metal-on–metal hip resurfacing. Curr Orthop 2002;16(6):420-425.[19] Schroder D,Bornstein L,Bostrom MP,et al. Ceramic- on-ceramic total hip arthroplasty: incidence of instability and noise. Clin Orthop Relat Res. 2011;469(2):437-442.[20] Swanson TV, Peterson DJ, Seethala R,et al.Influence of prosthetic design on squeaking after ceramic-on-ceramic total hip arthroplasty.J Arthroplasty.2010;25(6 Suppl):36-42.[21] Baek SH, Kim SY. Cementless total hip arthroplasty with alumina bearings in patients younger than fifty with femoral head osteonecrosis. J Bone Joint Surg Am. 2008; 90(6): 1314-1320.[22] Walter WL, O'toole GC, Walter WK, et al. Squeaking in ceramic-on-ceramic hips: the importance of acetabular component orientation. J Arthroplasty,2007;22(4):496-503.[23] Stanat SJ,Capozzi JD.Squeaking in third- and fourth-generation ceramic-on-ceramic total hip arthroplasty: meta-analysis and systematic review. J Arthroplasty. 2012; 27(3):445-453.[24] Chevillotte C, Pibarot V, Carret JP, et al. Hip squeaking: a 10-year follow-up study. J Arthroplasty. 2012;27(6): 1008-10013. [25] Chen WM, Wu PK, Chen CF,et al.No significant squeaking in total hip arthroplasty: a series of 413 hips in the Asian people. J Arthroplasty. 2012;27(8):1575-1579.[26] Haq RU,Park KS,Seon JK,et al.Squeaking after third-generation ceramic-on-ceramic total hip arthroplasty. J Arthroplasty. 2012;27(6):909-915. [27] Parvizi J, Adeli B, Wong JC, et al. A squeaky reputation: the problem may be design-dependent. Clin Orthop Relat Res. 2011;469(6):1598-1605.[28] Buttaro MA, Zanotti G, Comba FM,et al. Squeaking in a Delta ceramic-on-ceramic uncemented total hip arthroplasty.J Arthroplasty. 2012;27(6):1257-1259. [29] Yang CC, Kim RH, Dennis DA. The squeaking hip:a cause for concern-disagrees. Orthopedics,2007;30(9):739-742.[30] Morlock M, Nassutt R, Janssen R, et al.Mismatched wear couple zirconium oxide and aluminum oxide in total hip arthroplasty. J Arthroplasty,2001;16(8):1071-1074.[31] Restrepo C, Post ZD, Kai B, et al.The effect of stem design on the prevalence of squeaking following ceramic-on-ceramic bearing total hip arthroplasty. J Bone Joint Surg Am.2010; 92(3):550-557.[32] Keurentjes JC, Kuipers RM, Wever DJ, et al.High incidence of squeaking in tHAs with alumina ceramic-on-ceramic bearings. Clin Orthop Relat Res.2008;466(6):1438-1443.[33] Ranawat AS,Ranawat CS.The squeaking hip:a cause for concern-agrees. Orthopedics. 2007;30(9):738,743.[34] Toni A, Traina F, Stea S, et al. Early diagnosis of ceramic liner fracture. Guidelines based on a twelve-year clinical experience. J Bone Joint Surg Am.2006;88(Suppl 4):55-63.[35] Chevillotte C, Trousdale RT, Chen Q, et al. The 2009 Frank Stinchfield award:“hip squeaking”: a biomechanical study of ceramic-on-ceramic bearing surfaces.Clin Orthop Relat Res. 2010;468(2):345-350.[36] Walter WL, Insley GM, Walter WK, et al. Edge loading in third generation alumina ceramic-on-ceramic bearings: Stripe wear. J Arthroplasty.2004;19(4):402-413.[37] Walter WL, Kurtz SM, Esposito C,et al. Retrieval analysis of squeaking alumina ceramic-on-ceramic bearings.J Bone Joint Surg Br.2011;93(12):1597-1601.[38] Taylor S, Manley MT, Sutton K.The role of stripe wear in causing acoustic emissions from alumina ceramic-on-ceramic bearings. J Arthroplasty.2007;22(7 suppl 3):47-51.[39] Restrepo C, Parvizi J, Kurtz SM, et al. The noisy ceramic hip: Is component malpositioning the cause? J Arthroplasty. 2008; 23(5):643-649.[40] Stea S, Traina F, Beraudi A,et al. Synovial fluid microanalysis allows early diagnosis of ceramic hip prosthesis damage. J Orthop Res. 2012;30(8):1312-1320.[41] Brockett CL, Harper P, Williams S, et al.The influence of clearance on friction,lubrication and squeaking in large diameter metal-on-metal hip replacements. J Mater Sci Mater Med.2008;19(4):1575-1579.[42] Weiss C,Gdaniec P,Hoffmann NP,et al.Squeak in hipendoprosthesis systems:an experimental study and a numerical technique to analyze design variants.Medical Engineering&Physics.2010;32(6):604-609.[43] Walter WL,Gillies M,Donohoo S,et al. Resonance of the metallic components generates the sound in squeaking ceramic-on-ceramic hip replacements—an acoustic and finite element analysis.In:Proceedings of the 21st annual congress of the internationa lsociety for technology in arthroplasty. Seoul, Korea:ISTA;2008.[44] Si WJ, Li CG, Miao HZ. Advances in friction and wear studies of high performance ceramics for hip joint prostheses. Journal of Materials Science and Engineering 2004;22:424-427. [45] Sariali E, Stewart T, Zhongming J, et al. In vitro investigation of friction under edge loading conditions for ceramic-on-ceramic total hip prothesis. J Orthop Res.2010; 28(8):979-985. [46] Hothan A, Huber G, Weiss C,et al. The influence of component design, bearing clearance and axial load on the squeaking characteristics of ceramic hip articulations. J Biomech.2011;44: 837-841.[47] Glaser D, Komistek RD, Cates HE,et al. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions. J Biomech. 2010;43:426-432.[48] Sexton SA, Yeung E, Jackson MP, et al. The role of patient factors and implant position in squeaking of ceramic-on-ceramic total hip replacements. J Bone Joint Surg Br.2011; 93(4):439-442.[49] Matar WY,Restrepo C,Parvizi J,et al.Revision hip arthroplasty for ceramic-on-ceramic squeaking hips does not compromise the results. J Arthroplasty. 2010;25(6 Suppl):81-86. [50] Gallo J, Barry Goodman S, Lostak J,et al. Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012;156(3):204-212. |
[1] | Xiao Guoqing, Liu Xuanze, Yan Yuhao, Zhong Xihong. Influencing factors of knee flexion limitation after total knee arthroplasty with posterior stabilized prostheses [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1362-1367. |
[2] | Zhang Chong, Liu Zhiang, Yao Shuaihui, Gao Junsheng, Jiang Yan, Zhang Lu. Safety and effectiveness of topical application of tranexamic acid to reduce drainage of elderly femoral neck fractures after total hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1381-1386. |
[3] | Yuan Jiawei, Zhang Haitao, Jie Ke, Cao Houran, Zeng Yirong. Underlying targets and mechanism of Taohong Siwu Decoction in prosthetic joint infection on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1428-1433. |
[4] | Chen Junming, Yue Chen, He Peilin, Zhang Juntao, Sun Moyuan, Liu Youwen. Hip arthroplasty versus proximal femoral nail antirotation for intertrochanteric fractures in older adults: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1452-1457. |
[5] | Li Chenjie, Lü Linwei, Song Yang, Liu Jingna, Zhang Chunqiu. Measurement and statistical analysis of trabecular morphological parameters of titanium alloy peri-prosthesis under preload [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 516-520. |
[6] | Zhang Yu, Feng Shuo, Yang Zhi, Zhang Ye, Sun Jianning, An Lun, Chen Xiangyang. Three-dimensional gait of patients with developmental dysplasia of hip undergoing total hip arthroplasty with high hip center [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 350-355. |
[7] | Cheng Shigao, , Wang Wanchun, Jiang Dong, Li Tengfei, Li Xun, Ren Lian. Comparison of the standard and long-stem bone cement prosthesis replacement in the treatment of intertrochanteric fractures in elderly patients [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 362-367. |
[8] | Ma Rui, Wang Jialin, Wu Mengjun, Ge Ying, Wang Wei, Wang Kunzheng. Relationship of pathogenic bacteria distribution with drug resistance and treatment cycle for periprosthetic joint infection after total joint arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 380-385. |
[9] | Lü Zexiang, Wu Jutai, Jiang Jian, Feng Xiao, Li Tengfei, Wang Yehua. Effect of tranexamic acid combined with carbazochrome sodium sulfonate on blood loss and safety after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 386-390. |
[10] | Wang Shengjun, Yin Fei, Jiang Maoyu. Application of titanium ossicular prosthesis in one-stage open tympanoplasty for middle ear cholesteatoma [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3505-3509. |
[11] | Ma Qing, Shi Liyan, Huang Sixue, Zheng Zhangbowen, Zhang Aihua, Zhan Desong, Fu Jiale. Research status and prospect of zirconia ceramics in dental prosthesis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3597-3602. |
[12] | Mieralimu•Muertizha, Ainiwaerjiang•Damaola, Lin Haishan, Wang Li . Relationship between tibio-femoral mechanical axis deviation on coronal plane and early joint function recovery after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(21): 3300-3304. |
[13] | Zhang Haitao, Chen Jinlun, Zhu Xingyang, Zeng Huiliang, Li Jie, Sun Xiaobo, Qi Xinyu, Zeng Jianchun, Zeng Yirong. Effect and molecular mechanism of Honeysuckle-Rhizoma coptidis in the treatment of periprosthetic joint infection based on molecular docking and network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(21): 3360-3367. |
[14] | Fu Panfeng, Shang Wei, Kang Zhe, Deng Yu, Zhu Shaobo. Efficacy of anterolateral minimally invasive approach versus traditional posterolateral approach in total hip arthroplasty: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(21): 3409-3415. |
[15] | Ren Xingyu, Zhang Yi, Xu Haoran, Fan Bin, Dai Shifeng, Liang Chunyu. Meta-analysis of the postoperative effects of robot-assisted unicompartmental knee arthroplasty versus conventional surgery [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(21): 3416-3422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||