Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (7): 1115-1122.doi: 10.3969/j.issn.2095-4344.2017.07.024
Previous Articles Next Articles
Zhang Yun-ge, Song Ke-guan
Revised:
2016-11-28
Online:
2017-03-08
Published:
2017-04-11
Contact:
Song Ke-guan, M.D., Professor, Third Department of Orthopedics, First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
About author:
Zhang Yun-ge, Studying for master’s degree, Third Department of Orthopedics, First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
Supported by:
the National Natural Science Foundation of China, No. 81270635
CLC Number:
Zhang Yun-ge, Song Ke-guan. Periprosthetic osteolysis induced by wear particles: research progress of calcineurin/activated T cell nuclear factor signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1115-1122.
2.1 钙调磷酸酶/活化T细胞核因子信号通路组成 2.1.1 钙调磷酸酶 钙调磷酸酶最早是由克利,克劳奇和克林克斯在1979年基于它与钙结合性能及对神经组织定位功能首先提出的。钙调磷酸酶是一种广泛分布于人体各种组织的Ca2+依赖性丝/苏氨酸(Ser/Thr)蛋白磷酸酶,又称为蛋白磷酸酶 2B(protein phosphatase 2B,PP2B)。钙调磷酸酶由催化亚基A(Cna1)和一个调节亚基B(Cnb1)及3个催化亚基(CnaA,CnaB and CnaC)组成[8]。从细胞内外刺激钙释放来源看,钙调蛋白联合钙调磷酸酶异源二聚体AB,通过活化T细胞核因子(NFAT)脱磷酸作用和钙调磷酸酶A自抑制作用来激活磷酸酶的活性,NFAT脱磷酸化后转移到细胞核中调控相关基因的表达[9-10]。值得注意的是,活化的钙调蛋白始终是异源二聚体AB,随着Cnb1的损失通常导致Cna1催化亚基的不稳定[11]。在钙调磷酸酶发挥作用的时候,其主要作用底物是活化T细胞核因子。作为Ca2+信号调节途径的关键酶,它参与了多项重要生理功能或一些病理过程的调节如T细胞活化、肌肉量调节、学习记忆的形成和老年痴呆症的发生等[12]。 2.1.2 活化T细胞核因子 活化T细胞核因子转录因子家族包括活化T细胞核因子c1-4和活化T细胞核因子5五个成员,活化T细胞核因子是由特殊的磷酸酶和钙调磷酸酶激活[13]。细胞在静息状态下,活化T细胞核因子家族成员除了活化T细胞核因子5,N-末端调节结构区高度磷酸化均保留在细胞质中。该信号通路在持续钙离子内流作用下最终激活钙调磷酸酶,活化T细胞核因子蛋白质高度脱磷酸化促进其转位到细胞核并激活[14]。活化T细胞核因子家庭成员中与Rel/NF-κB的家族相关的转录因子有5个亚型,当钙离子浓度升高时,活化T细胞核因子1-4成为被钙调磷酸酶介导的几个丝氨酸残基激活的对象,并揭示了核定位信号序列和其核定位先决条件[15]。活化T细胞核因子1是一个普遍存在的异构体,现已发现在T细胞的激活过程中是白细胞介素分泌的调节转录因子[16]。活化T细胞核因子c1是核因子κB受体活化因子(receptor activator of NF-κB,RANK )信号下游的关键靶基因,是引起破骨细胞分化的基本效应分子,它与c-Fos、核因子κB等协同促进了耐酒石酸磷酸酶(TRACP)、组织蛋白酶和降钙素受体等破骨细胞特异性基因表达,而导致破骨细胞终末分化。研究表明核因子κB受体活化因子配体(receptor activator nuclear factor kappa ligand,RANKL)诱导活化T细胞核因子活化,特别是活化T细胞核因子c1是参与破骨细胞分化的主要调控因子,这种诱导调节是依赖于TRAF6、核因子κB和c-Fos通路实现的[17]。RANKL激发钙浓度升高,并通过丝氨酸/苏氨酸磷酸酶的调节,进而活化活化T细胞核因子c1,从而诱导破骨细胞的分化,特异性阻断钙调磷酸酶/活化T细胞核因子信号通路可抑制破骨细胞的分化,活化T细胞核因子c1表达水平减低,在RANKL存在的条件下,沉默活化T细胞核因子c1基因能够有效的抑制磨损微粒诱导的破骨细胞分化,说明活化T细胞核因子c1在磨损颗粒诱导的破骨细胞的激活中是必不可少的[18]。 2.2 钙调磷酸酶/活化T细胞核因子信号通路与破骨细胞 2.2.1 破骨细胞生成 关于骨的发生发展,起关键作用的是骨细胞、成骨细胞、破骨细胞及它们的前体细胞[19]。在人体内骨骼形成大多数是以软骨为基础骨化形成的。在形成过程中,长骨的延伸依赖于软骨细胞增殖的功能;而宽度的增加是由骨膜外缘随着与骨内膜表面骨侵蚀而自然生长的。这样,每个骨元素的大小和形状的变化是发生在整个骨重建过程。骨骼接近成熟后,骨的质量以及骨的密度是由骨重塑维持在一个动态的过程,即破骨细胞骨吸收伴随成骨细胞的骨重建[20-21]。因此,骨吸收和随后的骨形成必然是在空间和空间上是紧密耦合的。 破骨细胞是骨组织特有的一种巨大的多核细胞,从骨髓中的造血干细胞中分化,并参与调节重要生理功能、骨骼的动态平衡以及造血功能。破骨细胞的生物学特征和免疫系统功能主要体现在细胞因子受体的(RANKL-RANK)相互作用、细胞内信号转导分子(TRAF6)和转录因子(活化T细胞核因子c1)。虽然这些分子在破骨细胞分化中的作用是众所周知的,但根本性的问题仍然没有解决,包括对RANKL-RANK相互作用的确切位置和在体内造血细胞转化成具有骨吸收的作用的破骨细胞具体时空信息。破骨细胞是在钙化基质的表面发现的,尽管在体内破骨细胞发育的确切过程仍然存在大多的谜,人们普遍认为,骨髓是破骨细胞生成的部位。对于破骨细胞的形成,造血干细胞和微环境中的线索细胞是必需的;前者被认为是单核细胞的骨髓细胞/巨噬细胞谱系,而后者构成了巨噬细胞集落刺激因子巨噬细胞集落刺激因子(macrophage colony-stimulating factor,M-CSF)与RANKL。在破骨细胞分化过程中,M-CSF与RANKL结合于细胞表面受体上,提供破骨细胞存活、增殖的信号并激活相应的信号转导通路,使分化中的破骨细胞表达特异性基因,是成熟的破骨细胞执行骨吸收功能。近来,基因研究表明RANKL信号在破骨细胞分化及成熟发挥重要作用。RANKL在破骨细胞整个生命过程中是至关重要的,并且是看作是破骨细胞支持细胞的遗传标记[22]。RANKL结合RANK触发破骨细胞的终极分化程序,通过发生细胞内的激酶级联信号和核的遗传程序以及必要的转录因子的协调如c-Fos蛋白,核因子κB和活化T细胞核因子c1等[23]。然而,研究已经发现,破骨细胞形成的早期增殖阶段,RANKL在M-CSF存在下在实际上刺激DNA合成和细胞增殖,随后在破骨细胞增殖的后半程相同的细胞因子却发挥抗增殖活性[24]。针对RANKL这一阶段特有的2种特殊效果,可以提出合理假设,RANKL通过加强早期增殖而优化破骨细胞形成,从而保证有足够数量的破骨细胞前体用于随后的细胞-细胞接触及融合。M-CSF在破骨细胞前体细胞的增殖和存活起重要作用,通过结合M-CSF的同源受体c-fms发挥作用[25-26]。随着M-CSF的表达并与其受体 c-fms结合后激活了破骨细胞前体细胞的增生和细胞骨架的重构,使其向单核细胞/巨噬细胞系发育,并诱导RANK(receptor activator of NF-κB,核因子κB受体活化因子)的表达,形成了经典的破骨细胞前体途径。根据最近的一项研究,小鼠ERK1基因缺失可显著减少体内的破骨细胞生成,这表明ERK1在破骨细胞的分化起着重要的作用[27]。 破骨细胞一旦形成,寿命是短暂的,在几天之内死于细胞凋亡。然而,在这短短的时间内,破骨细胞产生和分泌重要的细胞外信号分子被中继到具有骨形成的作用的成骨细胞。在每个骨重建周期,破骨细胞骨吸收伴随骨的形成,从而维持两者整个过程中骨的质量和骨量。破骨细胞的成熟是伴随骨量的增加而增加的,破骨细胞的分化被认为是发生在一种由成骨细胞构成的特殊的骨髓基质谱系细胞和其他类型的细胞,虽然在体内精确的生态学定位仍有待确定。可以肯定的是破骨细胞的分化不是一个独立的过程,而是通过破骨细胞本身分泌多种细胞外信号分子,调控破骨细胞的增殖及分化。 2.2.2 钙调磷酸酶/活化T细胞核因子信号通路对破骨细胞生成调节 研究表明,转录因子活化T细胞核因子家族成员活化T细胞核因子c1是RANKL诱导破骨细胞分化成熟过程中的核心转录因子,调控破骨细胞特异性基因表达[28]。在破骨细胞分化早期,c-Fos即被募集至活化T细胞核因子c1启动子位置,与RANKL信号共同作用使得活化T细胞核因子c1正常表达,进而才能促使破骨细胞前体细胞向成熟破骨细胞分化。活化T细胞核因子c1无论在破骨细胞增殖及活化的体内实验还是体外实验都发挥重要作用。在体外,活化T细胞核因子c1缺陷的胚胎干细胞不能分化成破骨细胞,甚至在没有RANKL的情况下活化T细胞核因子c1的异位表达可直接诱导破骨细胞前体细胞向破骨细胞分化[17]。在体内,活化T细胞核因子c1的缺失的年轻小鼠可患骨硬化症,同时生成受损的破骨细胞也支持活化T细胞核因子c1在破骨细胞生成的过程中发挥了重要作用[29]。活化T细胞核因子c1 通过控制破骨细胞相关基因在调节破骨细胞分化进程中扮演着主要角色,而c-Fos是诱导活化T细胞核因子c1活化的重要因子[30]。细胞膜表面免疫受体信号是破骨细胞分化中不可缺少的共刺激信号,OSCAR、PIR-A、TREM-2、SIRPβ1等膜表面免疫受体激活后,通过其胞体内ITAM基序的变构改变包浆内Ca2+浓度,进而激活钙调磷酸酶促使活化T细胞核因子c1表达,促使破骨细胞生成。此外,RANKL作用下破骨细胞前体细胞中Lhx2、IRF-8、Bcl-6等活化T细胞核因子c1表达抑制基因表达量显著下降[31-32]。如上所述,活化T细胞核因子c1是破骨细胞形成必不可少的。 有趣的是,活化T细胞核因子c1的自主扩增依赖于活化T细胞核因子c1自身的诱导,而后诱导破骨细胞的生成。因此,可以预测抑制活化T细胞核因子c1可以抑制破骨细胞的形成,导致骨量增加[33]。活化T细胞核因子抑制剂FK506已在临床上作为一种免疫抑制应用于器官移植。然而,在FK506治疗的患者,以及在小鼠中骨量减少已被观察到,这是由于骨形成由FK506所抑制的结果。FK506抑制活化T细胞核因子-家族分子成员,虽然破骨细胞受FK506强烈抑制,但活化T细胞核因子家族成员参与调节成骨细胞生成,成骨强烈依赖于FK506的抑制,这导致骨量的严重较少[34]。也正因为抑制活化T细胞核因子c1的导致骨量减少,所以寻求其他破骨细胞生成的调节通路认为可能是潜在的治疗骨缺损的目标。由此可见,在破骨细胞分化、成熟过程中,钙调磷酸酶/活化T细胞核因子信号通路中的家族成员活化T细胞核因子c1是联系诱导破骨细胞生成的各条信号通路的关键点,在破骨细胞发生过程中起至关重要的作用。 2.3 与破骨细胞成熟及骨溶解相关的信号通路 对破骨细胞的研究发现其分化成熟过程中与许多信号通路有关,如,核因子κB 信号通路,Syk信号通路、丝裂原活化蛋白激酶信号通路、Notch信号通路、转化生长因子β/骨形态发生蛋白信号通路、蛋白激酶B信号通路、c-Jun氨基端激酶信号通路等。磨损颗粒诱导的骨溶解,是人工关节置换术后最常见的骨代谢平衡失稳状态。关节假体随活动而磨损产生的微小颗粒被假体周围组织中的巨噬细胞等识别、吞噬后,导致大量促炎细胞因子(肿瘤坏死因子α、白细胞介素1β、白细胞介素6、白细胞介素10、前列腺素等)产生,在局部诱导基质细胞、成骨细胞和淋巴细胞表达RANKL。当有M-CSF等共刺激信号存在时,单核巨噬细胞系来源的破骨细胞前体细胞受体RANK与RANKL相结合,穿膜受体RANK的包浆部分首先诱导肿瘤坏死因子相关蛋白TRAFs结合,随后激活上述多条信号转导通路,最终通过c-Src、TRAP、CATK、CAII等一系列破骨细胞特异性的基因表达,调节破骨细胞的生成分化、功能和调节。 2.3.1 丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)信号通路 该通路是细胞内的一类丝氨酸/苏氨酸蛋白激酶,能将细胞外刺激信号转导至细胞及其核内,引起细胞增殖、分化、转化及凋亡等。MAPKs的3条通路分别为p38 MARK,JNK MARK,ERK MARK,通过调控并导致破骨细胞核转录因子c-Fos表达增加,在RANK诱导的破骨细胞生成中起关键作用[35]。破骨细胞前体上 RANKL与RANK 结合后,促进MEK-6的磷酸化,进而激活p38 MAPK,活化的p38从细胞浆浆转移到细胞核,磷酸化转录因子MITF等,最终促进破骨细胞分化抑制p38 MAPK信号途径可以抑制破骨细胞分化和局部骨吸收[36]。 2.3.2 PI3K-Akt信号通路 磷脂酰肌醇3激酶(Phopsphatidylinositol 3-kinase)在细胞增殖、分化等生物作用信号转导中起着重要的作用。目前的研究证实,细胞内PI3K-Akt信号通路参与调控炎性因子的活化、破骨细胞的凋亡和基质降解酶的释放等病理过程[37-38]。PI3K-Akt通路主要通过促进基质合成代谢、抑制细胞凋亡、促进细胞增殖,此种调节广泛存在于软骨细胞、成骨细胞和破骨细胞的发育过程中[39]。 2.3.3 Hcedgehog(Hh)信号通路 该通路是调控细胞生长、发育和分化的关键通路之一。1980年Nusslein- Volhard等[40]首次在果蝇中发现了一种分节极性基因,因其突变导致的果蝇胚胎呈多毛团状,形似刺猬,故命名为Hedgehog。最近的研究发现,Hh信号通路通过与Wnt、PI3K-Akt、NF-κB、MAPK信号通路相互作用调控成骨细胞骨形成,但过度的Hh活化反过来又会抑制成骨细胞分化[41-45]。 2.4 钙调磷酸酶/活化T细胞核因子信号通路与磨损颗粒诱导骨溶解作用 植入人工关节随着患者的日常活动必然发生磨损,由此产生的聚乙烯颗粒、金属颗粒等磨损碎屑聚集在人工假体周围组织中诱导上述的生物学反应,导致假体周围组织中破骨细胞数量增多、功能活跃,进而破坏假体周围骨质,引起假体周围骨量减少并最终导致假体松动。这些颗粒会激活机体的免疫反应,诱导一系列炎症反应:如异物排斥反应、非特异性炎症等,从而启动单核细胞募集、巨噬细胞、破骨细胞分化的连锁反应[46]。目前普遍接受的是“颗粒-自然免疫-破骨细胞”的机制[47]。这一机制中,关节腔内磨损颗粒被自然免疫的第一道防线中的巨噬细胞吞噬,诱导其释放大量的炎症介质和细胞因子,如肿瘤坏死因子1α、白细胞介素1β、白细胞介素6、白细胞介素8、白细胞介素12、IFN-β、MCP-1、转化生长因子α等,它们通过上述内源性信号通路诱导细胞凋亡,影响骨代谢等途径诱导破骨细胞分化。重要的是,在大多数病例中,假体骨溶解经历一段相当长的无症状期然后才会发生无菌性松动[48-49]。最终的结果是发生严重的骨缺损,在一些患者中早期的翻修手术失败不得不通过复杂的翻修手术来处理这种骨溶解[50]。这种翻修手术与早期不那么复杂的有轻微骨缺损手术比较通常需要更长的时间,花费更加昂贵,并且与之相关联的并发症发生率也增加。此外,在这么困难的情况下,临床疗效和假体寿命还可能会受到影响[51]。颗粒病的概念是指非常小的假体磨损颗粒(微米或者更小的尺寸)刺激周围细胞表达促炎因子、促破骨细胞分化因子等物质,协同增加破骨细胞活性及增殖,抑制成骨细胞的成骨活性[52-53]。体内外研究已经证实,磨损颗粒主要通过核因子κB、JNK/AP-1、活化T细胞核因子等信号途径促进炎性因子(肿瘤坏死因子α、白细胞介素1、白细胞介素6等)的产生和骨溶解的进展。磨损颗粒诱导的破骨细胞分化与炎症的作用并不是单方面[54]。研究表明肿瘤坏死因子α通过正向调节成骨细胞表达RANKL、M-CSF和白细胞介素6并增强破骨细胞前体细胞对RANKL的反应性促进破骨细胞分化。Ca2+信号在破骨细胞分化、激活及凋亡中具有重要作用,钙调磷酸酶参与调节破骨细胞活性,改变细胞内Ca2+水平可影响RANKL诱导的破骨细胞分化和凋亡。 钙调磷酸酶/活化T细胞核因子信号传导通路在骨溶解作用的研究一直是科研工作者的重点,该通路也正是与Ca2+信号和RANKL参与破骨细胞分化相关的信号传导通路。活化T细胞核因子转录因子家族成员(活化T细胞核因子c1/c2/c3/c4)最初活化由钙/钙调蛋白调节。事实上,因为RANK似乎不直接激活钙信号,而且RANKL在破骨细胞前体细胞中只诱导一部分活化T细胞核因子c1的激活,这表明在钙信号作用下,RANK与RANKL共刺激诱导全部活化T细胞核因子c1的激活途径[17]。活化T细胞核因子c1的激活需要RANKL-RANK-丝裂原活化蛋白激酶和PLCγ2-Ca2+信号。在丝裂原活化蛋白激酶家族成员对丝氨酸和苏氨酸残基细胞外刺激选择性地脱磷酸化后使得信号转导从细胞表面的刺激到细胞核发挥作用[55-57]。研究显示在免疫细胞中,基于酪氨酸的活化基序(ITAM)承载分子如DNAX活化蛋白12(DAP12)和Fc受体共同链(FcRγ)介导的钙信号并激活活化T细胞核因子[58]。在破骨细胞中,DAP12 和FcRγ在钙信号通路活化T细胞核因子c1活化过程中发挥着重要作用。小鼠在DAP12和FcRγ骨表型双重缺陷的情况下表现出严重骨硬化,这表明DAP12、FcRγ和相关免疫球蛋白样受体是破骨细胞分化的关键[59-60]。RANKL通过未知的机制介导的ITAM脱磷酸结果导致Syk和PLCγ的激活。激活PLCγ动员细胞内钙,这反过来又激活钙调蛋白依赖性钙调磷酸酶。钙调神经磷酸酶直接使活化T细胞核因子c1丝氨酸残基脱磷酸化,允许其快速易位进入细胞核和随后的活化。RANKL-RANK信号也通过磷脂酶Cγ(PLCγ)激活钙离子信号通路[61-62]。PLCγ蛋白质联系酪氨酸激酶偶联受体使得Ca2+信号和PKC的激活[63]。先前的研究报道证实,在破骨细胞前体中PLCγ2是在下游的免疫受体适配器DAP12和与Fc受体γ激活的,而活化T细胞核因子c1的转录因子的下游激活由钙离子通过酪氨酸磷酸化途径信号传导的[64]。PLCγ调节蛋白激酶C(PKC)的活化,细胞内Ca2+水平,并且在造血系统活化T细胞C1(活化T细胞核因子c1)的表达[65]。PLCγ穿透膜磷脂酰肌醇4,5-二磷酸(PIP2)进入第二信使分子肌醇1,4,5-三磷酸(IP3)和二酰基甘油(DAG)。IP3直接通过诱导内质网钙库的释放增加细胞内Ca2+水平,而DAG在质膜激活PKC。在破骨细胞形成期间,增加的钙离子水平诱导活化T细胞核因子c1的脱磷酸化和活化T细胞核因子c1的易位进入细胞核。活化T细胞核因子c1通过结合到基因的启动子区域,如抗酒石酸酸性磷酸酶(TRAP)和破骨细胞相关受体(OSCAR)等活化T细胞核因子结合位点,这是破骨细胞形成过程中诱导靶基因的表达、分化及功能重要体现[66-67]。 信号分子的活化诱导转录因子如和核因子κB,活化T细胞核因子c1和激活蛋白1(AP-1),这些均是破骨细胞分化所必需的转录因子[68],特别是AP-1蛋白的相互作用。在骨髓细胞中活化T细胞核因子功能包括调节细胞因子产生、诱导细胞融合和破骨细胞分化。在骨髓细胞中,活化T细胞核因子基础表达很低,活化T细胞核因子显著表达依赖于钙信号的激活并通过核因子κB和AP-1。活化T细胞核因子c1是骨髓细胞的主要诱导蛋白,并且是能够自身诱导扩增的蛋白。在骨髓细胞中活化T细胞核因子c1的表达的唯一已知的强诱导剂是肿瘤坏死因子家族成员的RANKL。RANKL信号是一个对于破骨细胞终末分化主要的转录因子,能够强烈诱导活化T细胞核因子c1的产生。在破骨细胞形成的早期阶段,RANKL激活核因子κB和c-Fos蛋白刺激并诱导活化T细胞核因子c1。在P50/ P52缺陷和c-Fos缺陷细胞内RANKL介导的活化T细胞核因子c1的诱导产生受损。破骨细胞生成终末阶段,激活的c-Fos结合活化T细胞核因子c1的自身作用诱导活化T细胞核因子c1。RANKL诱导活化T细胞核因子c1产生是通过2个重要的转录因子核因子κB和c-Fos,活化增强的活化T细胞核因子c1转录反过来诱发积极的自身调节系统保持足够的活化T细胞核因子c1的表达[34,69]。RANKL激活TNF受体相关因子6(TRAF6)和c-Fos蛋白的途径,导致活化T细胞核因子c1的活化,其介导一种与细胞融合,破骨细胞分化,并有可能对活化T细胞核因子介导功能的基因表达[70-71]。从而证实了钙调磷酸酶/活化T细胞核因子信号传导通路对于磨损颗粒诱导的骨溶解病理过程中发挥了重要作用。"
[1] Kim YH, Park JW, Kim JS, et al.Twenty-Five- to Twenty-Seven-Year Results of a Cemented vs a Cementless Stem in the Same Patients Younger Than 50 Years of Age. J Arthroplasty. 2016 ;31(3):662-667.[2] Gallo J,Goodman SB,Konttinen YT, et al. Osteolysis around total knee arthroplasty: A review of pathogenetic mechanisms. Acta Biomaterialia.2013;9(9):8046-8058.[3] Bitar D, Parvizi J. Biological response to prosthetic debris. World J Orthop. 2015;6(2):172-189.[4] Kurtz S, Ong K, Lau E, et al.Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780-785.[5] Wang Z,Liu N,Kang L,et al.Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis.Autophagy.2015; 11(12):2358-2369.[6] Tsuji-Takechi K, Negishi-Koga T, Sumiya E, et al. Stage-specific functions of leukemia/lymphoma-related factor (LRF) in the transcriptional control of osteoclast development. Proc Natl Acad Sci U S A. 2012;109(7):2561-2566[7] Howie DW, Neale SD, Haynes DR, et al. Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management.Inflammopharmacology. 2013; 21(6): 389-396.[8] Lee SC, Li A, Calo S, et al. Calcineurin Plays Key Roles in the Dimorphic Transition and Virulence of the Human Pathogenic Zygomycete Mucor circinelloides.Plos Pathogens.2013;9(9): 289-290.[9] Steinbach WJ, Reedy JL, Jr CR, et al.Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections.Nature Reviews Microbiology. 2007;5(6): 418-430.[10] Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin as a multifunctional regulator: Unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biology Reviews.2014;28(2–3):56-69.[11] Chen YL, Kozubowski L, Cardenas ME, et al. On the Roles of Calcineurin in Fungal Growth and Pathogenesis. Current Fungal Infection Reports.2010;4(4):244-255.[12] Hudson MB, Price SR. Calcineurin: A poorly understood regulator of muscle mass. Int J Biochem Cell Biol. 2013; 45(10): 2173-2178.[13] Takayanagi H.The Role of NFAT in Osteoclast Formation. Annals of the New York Academy of Sciences. 2007;1116: 227-237.[14] Aliprantis AO, Glimcher LH.NFATc1 in Inflammatory and Musculoskeletal Conditions. Advances in Experimental Medicine & Biology.2010;658(658):69-75.[15] Hogan PG,Chen L,Nardone J,et al.Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & Development. 2003;17(18):2205-2232.[16] Sanjuan J, Olivares J.Identification of a putative regulator of early T cell activation genes.Science.1988;241(4862): 202-205.[17] Takayanagi H,Kim S,Koga T,et al. Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling in Terminal Differentiation of Osteoclasts. Developmental Cell.2002;3(6):889-901.[18] Liu FX, Wu CL, Zhu ZA, et al.Calcineurin/NFAT pathway mediates wear particleinduced TNF-α release and osteoclastogenesis from mice bone marrow macrophages in vitro. Acta Pharmacologica Sinica.2013;34(11): 1457-1466.[19] Fukunaga T. Evidence for osteocyte regulation of bone homeostasis through RANKL expression.Nature Medicine.2011;17(10):1231-1234.[20] Erlebacher A, Filvaroff EH, Gitelman SE, et al.Toward a molecular understanding of skeletal development. Cell. 1995;80(3):371-378.[21] Zaidi M.Skeletal remodeling in health and disease.Nature Medicine.2007; 13(7):791-801.[22] O'Brien CA.Control of RANKL gene expression. Bone.2010; 46(4):911-919.[23] Teitelbaum SL, Ross FP.Genetic regulation of osteoclast development and function. Nature Reviews Genetics.2003; 4(8):638-649.[24] Rahman MM,Takeshita S,Matsuoka K,et al. Proliferation-coupled osteoclast differentiation by RANKL: Cell density as a determinant of osteoclast formation. Bone. 2015; 81:392-399.[25] Feng X, Teitelbaum SL.Osteoclasts: New Insights. Bone Res. 2013;1(1):11-26.[26] Yu W, Chen J, Xiong Y, et al. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J Biol Chem. 2012;287(17):13694-13704.[27] He Y,Staser K,Rhodes SD,et al.Erk1 positively regulates osteoclast differentiation and bone resorptive activity. Plos One.2011;6(9):e24780-e24780.[28] Ikeda K,Takeshita S.The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem. 2016;159(1):1-8. [29] Aliprantis AO, Ueki Y,Sulyanto R, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest. 2008;118(11):3775-3789.[30] Miyamoto T. Regulators of osteoclast differentiation and cell-cell fusion. Keio J Med. 2011;60(4):101-105. [31] Kim JH,Youn BU, Kim K, et al. Lhx2 regulates bone remodeling in mice by modulating RANKL signaling in osteoclasts. Cell Death Differ. 2014;21(10):1613-1621.[32] Zhao B, Takami M, Yamada A, et al.Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis.Nature Medicine.2009;15(9):1066-1071.[33] Asagiri M, Sato K, Usami T, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 2005;202(9):1261-1269.[34] Koga T, Matsui Y, Asagiri M, et al. NFAT and Osterix cooperatively regulate bone formation. Nature Medicine.2005; 11(11):880-885.[35] Feng X. RANKing Intracellular Signaling in Osteoclasts. IUBMB Life. 2005;57(6):389-395.[36] Choi SW, Park KI, Yeon JT, et al. Anti-osteoclastogenic activity of matairesinol via suppression of p38/ERK-NFATc1 signaling axis. BMC Complement Altern Med.2014;14:35. [37] Zhang Y, He Y, Zong Y, et al. 17β-estradiol attenuates homocysteine-induced oxidative stress and inflammatory response as well as MAPKs cascade via activating PI3-K/Akt signal transduction pathway in Raw 264,7 cells. Acta Biochim Biophys Sin (Shanghai). 2015;47(2):65-72.[38] Gy?ri D, Csete D, Benk? S, et al. The Phosphoinositide 3-Kinase Isoform PI3Kβ Regulates Osteoclast-Mediated Bone Resorption in Humans and Mice.Arthritis Rheumatol. 2014;66(8):2210-2221.[39] Kim JA,Im S,Cantley LC,et al.Suppression of Nkx3.2 by phosphatidylinositol-3-kinase signaling regulates cartilage development by modulating chondrocyte hypertrophy.Cellular Signalling.2015:27(12):2389-2400.[40] Nüssleinvolhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila.Nature.1980; 287(5785):795-801.[41] Regard JB,Malhotra D,Gvozdenovic-Jeremic J,et al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification.Nature Medicine.2013; 19(11): 1505-1512.[42] Briggs LE, Burns TA, Lockhart MM, et al. Wnt/β-catenin and sonic hedgehog pathways interact in the regulation of the development of the dorsal mesenchymal protrusion. Dev Dyn. 2016;245(2):103-113.[43] Swarnkar G, Zhang K, Mbalaviele G, et al.Constitutive Activation of IKK2/NF-κB Impairs Osteogenesis and Skeletal Development. Plos One.2014;9(3):e91421.[44] Zhang R,Murakami S,Coustry F,et al.Constitutive activation of MKK6 in chondrocytes of transgenic mice inhibits proliferation and delays endochondral bone formation. Proc Natl Acad Sci U S A. 2006;103(2):365-370.[45] Kazmers NH, Mckenzie JA, Shen TS, et al. Hedgehog signaling mediates woven bone formation and vascularization during stress fracture healing.Bone.2015; 81:524-532.[46] Landgraeber S, Jäger M, Jacobs JJ, et al. The Pathology of Orthopedic Implant Failure Is Mediated by Innate Immune System Cytokines.Mediators Inflamm. 2014;2014:185150.[47] Rao A J, Gibon E, Ma T, et al. Revision joint replacement, wear particles, and macrophage polarization. Acta Biomaterialia. 2012;8(7):2815-2823.[48] Gallo J, Kamínek P, Zapletalová J, et al. [Is osteolysis associated with a stable total hip replacement asymptomatic?]. Acta Chir Orthop Traumatol Cech. 2004; 71(1):20-25.[49] Maloney W, Rosenberg A. What is the outcome of treatment for osteolysis?. J Am Acad Orthop Surg. 2008;16 Suppl 1: S26-32.[50] Deirmengian GK, Zmistowski B, O'Neil JT, et al. Management of acetabular bone loss in revision total hip arthroplasty. J Bone Joint Surg Am. 2011;93(19):1842-1852.[51] Garcia-Cimbrelo E, Garcia-Rey E, Cruz-Pardos A.The extent of the bone defect affects the outcome of femoral reconstruction in revision surgery with impacted bone grafting: a five- to 17-year follow-up study. J Bone Joint Surg Br. 2011; 93(11):1457-1464.[52] Konttinen YT,Zhao D,Beklen A,et al.The microenvironment around total hip replacement prostheses. Clin Orthop Relat Res. 2005;(430):28-38. Review.[53] Ren PG, Irani A, Huang Z, et al.Continuous Infusion of UHMWPE Particles Induces Increased Bone Macrophages and Osteolysis. Clin Orthop Relat Res. 2011;469(1):113-122. [54] Yamashita T,Takahashi N,Udagawa N.New roles of osteoblasts involved in osteoclast differentiation. World J Orthop. 2012;3(11):175-181.[55] Zarubin T, Han J.Activation and signaling of the p38 MAP kinase pathway.2005; 15(1):11-18.[56] Pearson G,Robinson F,Beers GT, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions.Endocrine Reviews.2001; 22(2):732-737.[57] Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol. 2012;4(11). pii: a011254.[58] Pitcher LA, van Oers NS. T-cell receptor signal transmission: who gives an ITAM?. Trends Immunol. 2003;24(10):554-560.[59] Koga T, Inui M, Inoue K, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature.2004;428(6984):758-763.[60] Mócsai A, Humphrey MB, Van Ziffle JA, et al. The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci U S A. 2004;101(16):6158-6163.[61] Faccio R, Cremasco V.PLCγ2: where bone and immune cells find their common ground. Ann N Y Acad Sci. 2010;1192: 124-130.[62] Kertész Z, Gy?ri D, Körmendi S, et al. Phospholipase Cγ2 is required for basal but not oestrogen deficiency–induced bone resorption. Eur J Clin Invest. 2012;42(1):49-60.[63] Patterson RL, van Rossum DB, Nikolaidis N, et al. Phospholipase C-gamma: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci. 2005;30(12):688-697.[64] Koga T, Inui M, Inoue K, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature.2004;428(6984):758-763.[65] Patterson RL, van Rossum DB, Nikolaidis N, et al. Phospholipase C: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci. 2005 Dec;30(12):688-697.[66] Walsh M C, Kim N, Kadono Y, et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol.2006;24: 33-63.[67] Kim K, Kim J H, Lee J, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem. 2005; 280(42):35209-35216.[68] Rauner M, Sipos W, Pietschmann P. Osteoimmunology. Int Arch Allergy Immunol. 2007;143(1):31-48. [69] Matsuo K, Galson D L, Zhao C, et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem. 2004;279(25): 26475-26480.[70] Asagiri M,Takayanagi H.The molecular understanding of osteoclast differentiation. Bone.2007; 40(40):251-64.[71] Yarilina A, Xu K, Chen J, et al. TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages. Proc Natl Acad Sci U S A. 2011; 108(4):1573-1578.[72] Li X,He L,Hu Y,et al.Sinomenine suppresses osteoclast formation and Mycobacterium tuberculosis H37Ra-induced bone loss by modulating RANKL signaling pathways.Plos One.2013;8(9):e74274. |
[1] | Shi Bin, An Jing, Chen Long-gang, Zhang Nan, Tian Ye . Influencing factors for pain after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 993-997. |
[2] | Wang Xian-xun. Impact of local compression cryotherapy combined with continuous passive motion on the early functional recovery after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 998-1003. |
[3] | Yuan Wei, Zhao Hui, Ding Zhe-ru, Wu Yu-li, Wu Hai-shan, Qian Qi-rong. Association between psychological resilience and acute mental disorders after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1015-1019. |
[4] | Chen Qun-qun, Qiao Rong-qin, Duan Rui-qi, Hu Nian-hong, Li Zhao, Shao Min. Acu-Loc®2 volar distal radius bone plate system for repairing type C fracture of distal radius [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1025-1030. |
[5] | Huang Xiang-wang, Liu Hong-zhe. A new low elastic modulus of beta titanium alloy Ti2448 spinal pedicle screw fixation affects thoracic stability: biomechanical analysis [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1031-1035. |
[6] | Xie Qiang. Three-dimensional finite element model for biomechanical analysis of stress in knee inversion and external rotation after posterior cruciate ligament rupture [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1036-1040. |
[7] | He Ze-dong, Zhao Jing, Chen Liang-yu, Li Ke, Weng Jie. Multilevel finite element analysis on the biological tribology damage of water on bone tissue [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1041-1045. |
[8] | Jiang Zi-wei, Huang Feng, Cheng Si-yuan, Zheng Xiao-hui, Sun Shi-dong, Zhao Jing-tao, Cong Hai-chen,Sun Han-qiao, Dong Hang. Design and finite element analysis of digital splint [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1052-1056. |
[9] | Wang Fei, Liu Zhi-bin, Tao Hui-ren, Zhang Jian-hua, Li Chang-hong, Cao Qiang, Zheng Jun, Liu Yan-xiong, Qu Xiao-peng. Clinical efficacy of preoperative osteotomy designs using paper-cut technology versus photoshop software for ankylosing spondylitis with kyphosis [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1057-1063. |
[10] | Li Hui, Ma Jun-yi, Ma Yuan, Zhu Xu . Establishment of a three-dimensional finite element model of ankylosing spondylitis kyphosis [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1069-1073. |
[11] | Ling Guan-han, Ou Zhi-xue, Yao Lan, Wen Li-chun, Wang Guo-xiang, Lin Heng-feng. Establishment of simulating three-dimensional model of China-Japan Friendship Hospital Classification for L type osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1074-1079. |
[12] | Fu Wei-min, Wang Ben-jie. Assessing the degree of necrotic femoral head, and association of blood supply with pathlogical changes: study protocol for a diagnostic animal trial [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1086-1091. |
[13] | Zhang Wen-qiang, Ding Qian, Zhang Na. Associations between alpha angle and herniation pit on oblique axial magnetic resonance imaging in asymptomatic hip joints of adults [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1098-1103. |
[14] | Sun Xiao-xin1, Zhou Wei2, Zuo Shu-ping3, Liu Hao1, Song Jing-feng1, Liang Chun-yu1. Morphological characteristics for the magnetic resonance imaging assessment of discoid lateral meniscal tears in children [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1104-1109. |
[15] | Lin Han-wen, Wen Jun-mao, Huang Chao-yuan, Zhou Chi, Tang Hong-yu. Correlation between the changes in lower limb power line and pain area in the knee osteoarthritis patients: imaging evaluation [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(7): 1110-1114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||