Chinese Journal of Tissue Engineering Research ›› 2015, Vol. 19 ›› Issue (52): 8487-8491.doi: 10.3969/j.issn.2095-4344.2015.52.022
Previous Articles Next Articles
Jiang Jie, Chen Liang, Gu Yong, Peng Zhan
Received:
2015-11-02
Online:
2015-12-17
Published:
2015-12-17
About author:
Jiang Jie, Studying for master’s degree, Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
Supported by:
the National Natural Science Foundation of China, No. K112228613
CLC Number:
Jiang Jie, Chen Liang, Gu Yong, Peng Zhan. Bone morphogenetic protein-2 carrier materials in the spinal fusion[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(52): 8487-8491.
[1] Alsaleh KA,Tougas CA,Roffey DM,et al.Osteoconductive bone graft extenders in posterolateral thoracolumbar spinal fusion: a systematic review.Spine (Phila Pa 1976). 2012; 37(16): E993-1000.
[2] Bessa PC,Casal M,Reis RL.Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery).J Tissue Eng Regen Med. 2008; 2(2-3): 81-96.
[3] Lee SS, Huang BJ, Kaltz SR, et al.Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds.Biomaterials.2013; 34(2): 452-459.
[4] 欧阳毅,于博.骨形态发生蛋白-2载体材料在骨缺损修复方面的研究进展[J].广东医学, 2013,34(9):1454-1456.
[5] 吴军成,霍然,吕仁荣.软骨组织工程中支架材料的文献回顾[J].中国组织工程研究,2012, 16(3): 522-6.
[6] Venkatesan J, Bhatnagar I, Manivasagan P, et al. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol.2015;72:269-281.
[7] Abbah SA, Liu J, Goh JC,et al.Enhanced control of in vivo bone formation with surface functionalized alginate microbeads incorporating heparin and human bone morphogenetic protein-2.Tissue Eng Part A. 2013;19(3-4): 350-359.
[8] 张佼佼,王冬青,王志强,等.组织工程软骨支架材料的应用选择[J].中国组织工程研究, 2011,15(29):5467-5470.
[9] 陈书军,裴国献,郭刚,等.纤维蛋白在软骨组织工程中的应用[J].国外医学:生物医学工程分册, 2005,28(4):249-253.
[10] Koo KH,Yeo do H, Ahn JM,et al.Lumbar posterolateral fusion using heparin-conjugated fibrin for sustained delivery of bone morphogenic protein-2 in a rabbit model.Artif Organs. 2012; 36(7):629-634.
[11] Ben-David D, Srouji S, Shapira-Schweitzer Ket al.Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials. 2013; 34(12): 2902-2910.
[12] 梁卫东,王宏伟,王志强.不同骨组织工程支架材料的生物安全性及性能[J].中国组织工程研究,2010,14(34):6385-6388.
[13] 韩佳珺,周赞,顾燕柄,等.胶原支架负载BMP2促进大鼠脊柱横突融合的临床观察[J].中国现代医药杂志,2012,14(11):1-4.
[14] 张鸣,李翔.脱钙骨基质的临床应用与研究进展[J].医学综述, 2013,19(14):2540-2542.
[15] Biswas D, Bible JE, Whang PH,et al.Augmented demineralized bone matrix: x a potential alternative for posterolateral lumbar spinal fusion.Am J Orthop (Belle Mead NJ). 2010;39(11):531-538.
[16] Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA.Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int.2015; 2015(729076.
[17] 张娜,郭圣荣.聚己酸内酯及其在医药领域的应用[J].生物医学工程学杂志,2003,20(4): 746-749.
[18] Yong MR,Saifzadeh S,Woodruff M,et al.Biological performance of a polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model.Eur Spine J.2013;23(3): 650-657.
[19] 李梦雪.聚乳酸羟基乙酸共聚物的制备及应用[J].黑龙江医药, 2012,25(3):410-412.
[20] Fischgrund JS, James SB, Chabot MC,et al.Augmentation of autograft using rhBMP-2 and different carrier media in the canine spinal fusion model.J Spinal Disord.1997;10(6): 467-472.
[21] 秦超师,冯高科,蒋学俊,等.无定形磷酸钙应用在生物医学中的特点[J].中国组织工程研究, 2014,18(39):6353-6358.
[22] Liu B,Lun DX.Current application of beta-tricalcium phosphate composites in orthopaedics.Orthop Surg. 2012; 4(3):139-144.
[23] Sterling JA, Guelcher SA.Biomaterial scaffolds for treating osteoporotic bone. Curr Osteoporos Rep.2014;12(1):48-54.
[24] Pelletier MH, Oliver RA, Christou C,et al.Lumbar spinal fusion with beta-TCP granules and variable Escherichia coli-derived rhBMP-2 dose.Spine J.2014;14(8):1758-1768.
[25] 冯晓娜,杨宪园,卢婷利,等.羟基磷灰石微载体的应用及制备[J].材料导报,2013,27(3): 87-90.
[26] Kong CB, Lee JH, Baek HR,et al.Posterolateral lumbar fusion using Escherichia coli-derived rhBMP-2/hydroxyapatite in the mini pig.Spine J.2014;14(12): 2959-2967.
[27] Abbah SA, Lam CX, Ramruttun AK,et al.Fusion performance of low-dose recombinant human bone morphogenetic protein 2 and bone marrow-derivedmultipotent stromal cells in biodegradable scaffolds: a comparative study in a large animal model of anterior lumbar interbody fusion.Spine (Phila Pa 1976).2011;36(21):1752-1759.
[28] Khan SN, Toth JM, Gupta K,et al. Early-term and mid-term histologic events during single-level posterolateral intertransverse process fusion with rhBMP-2/collagen carrier and a ceramic bulking agent in a nonhuman primate model: implications for bone graft preparation.J Spinal Disord Tech. 2014;27(4):212-219.
[29] Gu Y, Chen L, Yang HLet al Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion.J Biomed Mater Res A. 2011;97(2): 177-185.
[30] Matsumoto T, Toyoda H, Dohzono S,et al.Efficacy of interspinous process lumbar fusion with recombinant human bone morphogenetic protein-2 delivered with a synthetic polymer and beta-tricalcium phosphate in a rabbit model.Eur Spine J .2012; 21(7):1338-1345.
[31] Pilipchuk SP, Plonka AB, Monje A, et al.Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater.2015;31(4):317-338.
[32] Claros S, Rico-Llanos GA, Becerra J,et al.A novel human TGF-beta1 fusion protein in combination with rhBMP-2 increases chondro-osteogenic differentiation of bone marrow mesenchymal stem cells.Int J Mol Sci. 2014; 15(7): 11255- 11274.
[33] Haidar ZS, Hamdy RC, Tabrizian M.Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: Delivery systems for BMPs in orthopaedic and craniofacial tissue engineering.Biotechnol Lett. 2009;31(12): 1825-1835.
[34] Francis CS, Mobin SS,Lypka MA,et al.rhBMP-2 with a demineralized bone matrix scaffold versus autologous iliac crest bone graft for alveolar cleft reconstruction. Plast Reconstr Surg 2013;131(5):1107-1115.
[35] Koo KH, Lee JM, Ahn JM,et al.Controlled delivery of low-dose bone morphogenetic protein-2 using heparin-conjugated fibrin in the posterolateral lumbar fusion of rabbits.Artif Organs. 2013;37(5):487-494.
[36] Romagnoli C,D'Asta F,Brandi ML.Drug delivery using composite scaffolds in the context of bone tissue engineering. Clin Cases Miner Bone Metab. 2013;10(3):155-161.
[37] Walmsley GG,McArdle A,Tevlin R,et al.Nanotechnology in bone tissue engineering. Nanomedicine. 2015; 11(5): 1253-1263 .
[38] Chung YI,Ahn KM,Jeon SH,et al.Enhanced bone regeneration with BMP-2 loaded functional nanoparticle- hydrogel complex.J Control Release. 2007; 121(1-2):91-99.
[39] Sowjanya JA,Singh J,Mohita T,et al.Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering.Colloids Surf B Biointerfaces. 2013; 109: 294-300.
[40] He X,Dziak R,Mao K,et al.Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration.Tissue Eng Part A.2013;19(3-4):508-518. |
[1] | Chen Ziyang, Pu Rui, Deng Shuang, Yuan Lingyan. Regulatory effect of exosomes on exercise-mediated insulin resistance diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 4089-4094. |
[2] | Chen Yang, Huang Denggao, Gao Yuanhui, Wang Shunlan, Cao Hui, Zheng Linlin, He Haowei, Luo Siqin, Xiao Jingchuan, Zhang Yingai, Zhang Shufang. Low-intensity pulsed ultrasound promotes the proliferation and adhesion of human adipose-derived mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3949-3955. |
[3] | Yang Junhui, Luo Jinli, Yuan Xiaoping. Effects of human growth hormone on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3956-3961. |
[4] | Sun Jianwei, Yang Xinming, Zhang Ying. Effect of montelukast combined with bone marrow mesenchymal stem cell transplantation on spinal cord injury in rat models [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3962-3969. |
[5] | Gao Shan, Huang Dongjing, Hong Haiman, Jia Jingqiao, Meng Fei. Comparison on the curative effect of human placenta-derived mesenchymal stem cells and induced islet-like cells in gestational diabetes mellitus rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3981-3987. |
[6] | Hao Xiaona, Zhang Yingjie, Li Yuyun, Xu Tao. Bone marrow mesenchymal stem cells overexpressing prolyl oligopeptidase on the repair of liver fibrosis in rat models [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3988-3993. |
[7] | Liu Jianyou, Jia Zhongwei, Niu Jiawei, Cao Xinjie, Zhang Dong, Wei Jie. A new method for measuring the anteversion angle of the femoral neck by constructing the three-dimensional digital model of the femur [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3779-3783. |
[8] | Meng Lingjie, Qian Hui, Sheng Xiaolei, Lu Jianfeng, Huang Jianping, Qi Liangang, Liu Zongbao. Application of three-dimensional printing technology combined with bone cement in minimally invasive treatment of the collapsed Sanders III type of calcaneal fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3784-3789. |
[9] | Qian Xuankun, Huang Hefei, Wu Chengcong, Liu Keting, Ou Hua, Zhang Jinpeng, Ren Jing, Wan Jianshan. Computer-assisted navigation combined with minimally invasive transforaminal lumbar interbody fusion for lumbar spondylolisthesis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3790-3795. |
[10] | Hu Jing, Xiang Yang, Ye Chuan, Han Ziji. Three-dimensional printing assisted screw placement and freehand pedicle screw fixation in the treatment of thoracolumbar fractures: 1-year follow-up [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3804-3809. |
[11] | Shu Qihang, Liao Yijia, Xue Jingbo, Yan Yiguo, Wang Cheng. Three-dimensional finite element analysis of a new three-dimensional printed porous fusion cage for cervical vertebra [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3810-3815. |
[12] | Wang Yihan, Li Yang, Zhang Ling, Zhang Rui, Xu Ruida, Han Xiaofeng, Cheng Guangqi, Wang Weil. Application of three-dimensional visualization technology for digital orthopedics in the reduction and fixation of intertrochanteric fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3816-3820. |
[13] | Sun Maji, Wang Qiuan, Zhang Xingchen, Guo Chong, Yuan Feng, Guo Kaijin. Development and biomechanical analysis of a new anterior cervical pedicle screw fixation system [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3821-3825. |
[14] | Lin Wang, Wang Yingying, Guo Weizhong, Yuan Cuihua, Xu Shenggui, Zhang Shenshen, Lin Chengshou. Adopting expanded lateral approach to enhance the mechanical stability and knee function for treating posterolateral column fracture of tibial plateau [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3826-3827. |
[15] | Zhu Yun, Chen Yu, Qiu Hao, Liu Dun, Jin Guorong, Chen Shimou, Weng Zheng. Finite element analysis for treatment of osteoporotic femoral fracture with far cortical locking screw [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3832-3837. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||