中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (19): 4091-4101.doi: 10.12307/2025.068
• 干细胞综述 stem cell review • 上一篇 下一篇
李清音1,2,李林华1,张春乐1,付 平1
收稿日期:
2024-02-23
接受日期:
2024-04-29
出版日期:
2025-07-08
发布日期:
2024-09-13
通讯作者:
付平,博士,教授,主任医师,四川大学华西医院肾脏内科,肾脏病研究所,四川省成都市 610041
作者简介:
李清音,女,2001 年生,河南省周口市人,汉族,四川大学在读硕士,主要从事生物材料表面改性相关研究。
Li Qingyin1, 2, Li Linhua1, Zhang Chunle1, Fu Ping1
Received:
2024-02-23
Accepted:
2024-04-29
Online:
2025-07-08
Published:
2024-09-13
Contact:
Fu Ping, PhD, Professor, Chief physician, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
About author:
Li Qingyin, Master candidate, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Frontier Science Center for Disease-related Molecular Network, Sichuan University, Chengdu 610041, Sichuan Province, China
摘要:
文题释义:
血管支架相关疾病:①使用血管支架介入治疗的疾病(文中主要介绍的是动脉粥样硬化);②血管支架植入损伤并发症(血栓、内膜增生)。结果与结论:内皮祖细胞、间充质干细胞能够通过分化以及旁分泌作用治疗动脉粥样硬化及支架植入损伤并发症,其作用机制主要包括保护内皮细胞、调节炎症细胞与炎症因子表达、调节平滑肌细胞增殖和表型等。间充质干细胞在治疗应用中可能伴有血栓、血管钙化等不良反应,使用细胞外囊泡、联合使用肝素进行表面设计是解决这一问题的可行方案。目前基于内皮祖细胞的支架研究较多,主要从内皮祖细胞的募集、捕获、增殖、分化与活性等方面进行支架表面改性;血管领域基于间充质干细胞捕获的支架研究较少,但间充质干细胞来源外泌体洗脱支架被发现具有极高的治疗效能。此外一些基础疾病如糖尿病可能会对成体干细胞活性造成影响,导致基于干细胞设计的支架失去效能,因而未来在设计相应的支架时,应注意考虑这方面的影响因素。
https://orcid.org/0009-0009-9186-8860 (李清音)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
李清音, 李林华, 张春乐, 付 平. 内皮祖细胞与间充质干细胞治疗血管支架相关疾病[J]. 中国组织工程研究, 2025, 29(19): 4091-4101.
Li Qingyin, Li Linhua, Zhang Chunle, Fu Ping. Endothelial progenitor cell and mesenchymal stem cell therapy for vascular stent-associated diseases[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(19): 4091-4101.
[1] VISHWAKARMA A, SHARPE P, SHI ST, et al. Stem Cell Biology and Tissue Engineering in Dental Sciences. Boston: Academic Press. 2015:1-13. [2] BRIGNIER AC, GEWIRTZ AM. Embryonic and adult stem cell therapy. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S336-344. [3] ROBERTSON JA. Embryo stem cell research: ten years of controversy. J Law Med Ethics. 2010;38(2):191-203. [4] 曹雪洁,陶佳平,曲爱娟,等.血管壁干细胞与血管重塑相关性疾病[J].中国动脉硬化杂志,2022,30(11):921-929. [5] BIANCONI V, SAHEBKAR A, KOVANEN P, et al. Endothelial and cardiac progenitor cells for cardiovascular repair: A controversial paradigm in cell therapy. Pharmacol Ther. 2018;181:156-168. [6] SUN LL, LIU Z, RAN F, et al. Non-coding RNAs regulating endothelial progenitor cells for venous thrombosis: promising therapy and innovation. Stem Cell Res Ther. 2024;15(1):7. [7] WILS J, FAVRE J, BELLIEN J. Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther. 2017;170:98-115. [8] HICKSON LJ, EIRIN A, LERMAN LO. Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int. 2016;89(4):767-778. [9] BARQUERA S, PEDROZA-TOBÍAS A, MEDINA C, et al. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch Med Res. 2015;46(5):328-338. [10] PETRIE JR, GUZIK TJ, TOUYZ RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018;34(5):575-584. [11] BOBRYSHEV YV, OREKHOV AN, CHISTIAKOV DA. Vascular stem/progenitor cells: current status of the problem. Cell Tissue Res. 2015;362(1):1-7. [12] WANG X, WANG R, JIANG L, et al. Endothelial repair by stem and progenitor cells. J Mol Cell Cardiol. 2022;163:133-146. [13] CHENG CC, CHANG SJ, CHUEH YN, et al. Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics. 2013;14:182. [14] YAN F, LIU X, DING H, et al. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022;124(1): 151833. [15] MEDINA RJ, BARBER CL, SABATIER F, et al. Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Transl Med. 2017;6(5):1316-1320. [16] AFRA S, MATIN MM. Potential of mesenchymal stem cells for bioengineered blood vessels in comparison with other eligible cell sources. Cell Tissue Res. 2020;380(1):1-13. [17] IKHAPOH I. Regulatory Mechanisms Underlying the Differentiation of Mesenchymal Stem Cells to Endothelial Cells. Creighton University. 2016. [18] WANG C, LI Y, YANG M, et al. Efficient Differentiation of Bone Marrow Mesenchymal Stem Cells into Endothelial Cells in Vitro. Eur J Vasc Endovasc Surg. 2018;55(2):257-265. [19] ZITTERMANN SI, ISSEKUTZ AC. Endothelial growth factors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation. J Leukoc Biol. 2006;80(2):247-257. [20] LIU Y, CHEN J, LIANG H, et al. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res Ther. 2022;13(1):258. [21] BAI S, YIN Q, DONG T, et al. Endothelial progenitor cell-derived exosomes ameliorate endothelial dysfunction in a mouse model of diabetes. Biomed Pharmacother. 2020;131:110756. [22] LI L, WANG H, ZHANG J, et al. Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury. Cell Death Discov. 2021; 7(1):235. [23] MATHIYALAGAN P, LIANG Y, KIM D, et al. Angiogenic Mechanisms of Human CD34+ Stem Cell Exosomes in the Repair of Ischemic Hindlimb. Circ Res. 2017;120(9):1466-1476. [24] XIAO X, XU M, YU H, et al. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct Target Ther. 2021;6(1):354. [25] LI Z, XU Y, LU S, et al. Bone mesenchymal stem cell extracellular vesicles delivered miR let-7-5p alleviate endothelial glycocalyx degradation and leakage via targeting ABL2. Cell Commun Signal. 2023;21(1):205. [26] WANG D, GAO B, YUE J, et al. Exosomes from mesenchymal stem cells expressing miR-125b inhibit neointimal hyperplasia via myosin IE. J Cell Mol Med. 2019;23(2):1528-1540. [27] GOH ET, WONG E, FARHATNIA Y, et al. Accelerating in situ endothelialisation of cardiovascular bypass grafts. Int J Mol Sci. 2014; 16(1):597-627. [28] SIMONCINI S, TOUPANCE S, LABAT C, et al. Functional Impairment of Endothelial Colony Forming Cells (ECFC) in Patients with Severe Atherosclerotic Cardiovascular Disease (ASCVD). Int J Mol Sci. 2022; 23(16):8969. [29] BLOOM SI, ISLAM MT, LESNIEWSKI LA, et al. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023; 20(1):38-51. [30] MUNDI S, MASSARO M, SCODITTI E, et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res. 2018;114(1):35-52. [31] BARRETT TJ, SCHLEGEL M, ZHOU F, et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci Transl Med. 2019;11(517):eaax0481. [32] LIBBY P. The changing landscape of atherosclerosis. Nature. 2021; 592(7855):524-533. [33] JEBARI-BENSLAIMAN S, GALICIA-GARCÍA U, LARREA-SEBAL A, et al. Pathophysiology of Atherosclerosis. Int J Mol Sci. 2022;23(6):3346. [34] EVANS CE, IRUELA-ARISPE ML, ZHAO YY. Mechanisms of Endothelial Regeneration and Vascular Repair and Their Application to Regenerative Medicine. Am J Pathol. 2021;191(1):52-65. [35] NAITO T, SHUN M, NISHIMURA H, et al. Pleiotropic effect of erythropoiesis-stimulating agents on circulating endothelial progenitor cells in dialysis patients. Clin Exp Nephrol. 2021;25(10):1111-1120. [36] YUAN Z, KANG L, WANG Z, et al. 17β-estradiol promotes recovery after myocardial infarction by enhancing homing and angiogenic capacity of bone marrow-derived endothelial progenitor cells through ERα-SDF-1/CXCR4 crosstalking. Acta Biochim Biophys Sin (Shanghai). 2018; 50(12):1247-1256. [37] WEI H, TAN T, CHENG L, et al. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep. 2020;22(4):3327-3337. [38] ALTABAS V, BILOŠ LSK. The Role of Endothelial Progenitor Cells in Atherosclerosis and Impact of Anti-Lipemic Treatments on Endothelial Repair. Int J Mol Sci. 2022;23(5):2663. [39] KE X, LIAO Z, LUO X, et al. Endothelial colony-forming cell-derived exosomal miR-21-5p regulates autophagic flux to promote vascular endothelial repair by inhibiting SIPL1A2 in atherosclerosis. Cell Commun Signal. 2022;20(1):30. [40] MAUSE SF, RITZEL E, DECK A, et al. Engagement of the CXCL12-CXCR4 Axis in the Interaction of Endothelial Progenitor Cell and Smooth Muscle Cell to Promote Phenotype Control and Guard Vascular Homeostasis. Int J Mol Sci. 2022;23(2):867. [41] MA Y, GU T, HE S, et al. Development of stem cell therapy for atherosclerosis. Mol Cell Biochem. 2023. doi: 10.1007/s11010-023-04762-8. [42] ZHANG X, REN Z, JIANG Z. EndMT-derived mesenchymal stem cells: a new therapeutic target to atherosclerosis treatment. Mol Cell Biochem. 2023;478(4):755-765. [43] MA J, CHEN L, ZHU X, et al. Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 2021;53(9):1227-1236. [44] LI J, XUE H, LI T, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE-/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun. 2019;510(4):565-572. [45] YANG W, YIN R, ZHU X, et al. Mesenchymal stem-cell-derived exosomal miR-145 inhibits atherosclerosis by targeting JAM-A. Mol Ther Nucleic Acids. 2020;23:119-131. [46] ZHANG N, LUO Y, ZHANG H, et al. Exosomes Derived from Mesenchymal Stem Cells Ameliorate the Progression of Atherosclerosis in ApoE-/- Mice via FENDRR. Cardiovasc Toxicol. 2022;22(6):528-544. [47] 刘小春,吴素慧,王文珍,等.人脐带和脂肪来源间充质干细胞培养上清对内皮细胞血管新生作用[J].中华医学杂志,2020,100(6): 456-459. [48] LI Y, SHI G, LIANG W, et al. Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Alleviates Atherosclerotic Plaque by Inhibiting Ox-LDL Uptake, Inflammatory Reaction and Endothelial Damage in Rabbits. Cells. 2023;12(15):1936. [49] LI Z, YANG A, YIN X, et al. Mesenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissue-engineered constructs via activating CXCR2-Src-PKL/Vav2-Rac1. FASEB J. 2018;32(4):2197-2211. [50] LEE J, HENDERSON K, MASSIDDA MW, et al. Mechanobiological conditioning of mesenchymal stem cells for enhanced vascular regeneration. Nat Biomed Eng. 2021;5(1):89-102. [51] FAN M, BAI J, DING T, et al. Adipose-Derived Stem Cell Transplantation Inhibits Vascular Inflammatory Responses and Endothelial Dysfunction in Rats with Atherosclerosis. Yonsei Med J. 2019;60(11):1036-1044. [52] 刘峰涛,于紫英.血管平滑肌细胞与动脉粥样硬化斑块稳定性的研究进展[J].中国心血管杂志,2021,26(3):299-302. [53] BYRNE RA, JONER M, KASTRATI A. Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. Eur Heart J. 2015;36(47):3320-3331. [54] WU B, MOTTOLA G, SCHALLER M, et al. Resolution of vascular injury: Specialized lipid mediators and their evolving therapeutic implications. Mol Aspects Med. 2017;58:72-82. [55] MELNIK T, JORDAN O, CORPATAUX JM, et al. Pharmacological prevention of intimal hyperplasia: A state-of-the-art review. Pharmacol Ther. 2022;235:108157. [56] ABOU-SALEH H, HACHEM A, YACOUB D, et al. Endothelial progenitor cells inhibit platelet function in a P-selectin-dependent manner. J Transl Med. 2015;13:142. [57] ABOU-SALEH H, YACOUB D, THÉORÊT JF, et al. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation. Circulation. 2009;120(22):2230-2239. [58] LI WD, LI XQ. Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol. 2016;83:10-16. [59] MOLDOVAN NI, ASAHARA T. Role of blood mononuclear cells in recanalization and vascularization of thrombi: past, present, and future. Trends Cardiovasc Med. 2003;13(7):265-269. [60] CARNEIRO GD, SIELSKI MS, VIEIRA CP, et al. Administration of endothelial progenitor cells accelerates the resolution of arterial thrombus in mice. Cytotherapy. 2019;21(4):444-459. [61] FENG Y, LEI B, ZHANG H, et al. MicroRNA-136-5p from Endothelial Progenitor Cells-released Extracellular Vesicles Mediates TXNIP to Promote the Dissolution of Deep Venous Thrombosis. Shock. 2022; 57(5):714-721. [62] WU X, JIANG J, GU Z, et al. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther. 2020 ;11(1):345. [63] GUILLAMAT-PRATS R. Role of Mesenchymal Stem/Stromal Cells in Coagulation. Int J Mol Sci. 2022;23(18):10393. [64] NETSCH P, ELVERS-HORNUNG S, UHLIG S, et al. Human mesenchymal stromal cells inhibit platelet activation and aggregation involving CD73-converted adenosine. Stem Cell Res Ther. 2018;9(1):184. [65] YANG B, LONG Y, ZHANG A, et al. Procoagulant Properties of Mesenchymal Stem Cells and Extracellular Vesicles: A Novel Aspect of Thrombosis Pathogenesis. Stem Cells. 2024;42(2):98-106. [66] COPPIN L, SOKAL E, STÉPHENNE X. Thrombogenic Risk Induced by Intravascular Mesenchymal Stem Cell Therapy: Current Status and Future Perspectives. Cells. 2019;8(10):1160. [67] SUN H, MORIHARA R, FENG T, et al. Human Cord Blood-Endothelial Progenitor Cells Alleviate Intimal Hyperplasia of Arterial Damage in a Rat Stroke Model. Cell Transplant. 2023;32:9636897231193069. [68] WANG W, ZHANG Y, HUI H, et al. The effect of endothelial progenitor cell transplantation on neointimal hyperplasia and reendothelialisation after balloon catheter injury in rat carotid arteries. Stem Cell Res Ther. 2021;12(1):99. [69] XU RW, ZHANG WJ, ZHANG JB, et al. A Preliminary Study of the Therapeutic Role of Human Early Fetal Aorta-derived Endothelial Progenitor Cells in Inhibiting Carotid Artery Neointimal Hyperplasia. Chin Med J (Engl). 2015;128(24):3357-3362. [70] CHEN K, LI Y, XU L, et al. Comprehensive insight into endothelial progenitor cell-derived extracellular vesicles as a promising candidate for disease treatment. Stem Cell Res Ther. 2022;13(1):238. [71] SHOJI M, OSKOWITZ A, MALONE CD, et al. Human mesenchymal stromal cells (MSCs) reduce neointimal hyperplasia in a mouse model of flow-restriction by transient suppression of anti-inflammatory cytokines. J Atheroscler Thromb. 2011;18(6):464-474. [72] KIM AK, KIM MH, KIM DH, et al. Inhibitory effects of mesenchymal stem cells in intimal hyperplasia after balloon angioplasty. J Vasc Surg. 2016;63(2):510-517. [73] ISO Y, USUI S, TOYODA M, et al. Bone marrow-derived mesenchymal stem cells inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia after arterial injury in rats. Biochem Biophys Rep. 2018;16:79-87. [74] CAI C, KILARI S, ZHAO C, et al. Therapeutic Effect of Adipose Derived Mesenchymal Stem Cell Transplantation in Reducing Restenosis in a Murine Angioplasty Model. J Am Soc Nephrol. 2020;31(8):1781-1795. [75] HADE MD, SUIRE CN, SUO Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells. 2021;10(8):1959. [76] LIU Z, WU C, ZOU X, et al. Exosomes derived from mesenchymal stem cells inhibit neointimal hyperplasia by activating the Erk1/2 signalling pathway in rats. Stem Cell Res Ther. 2020;11(1):220. [77] DENG Y, LI Y, CHU Z, et al. Exosomes from umbilical cord-derived mesenchymal stem cells combined with gelatin methacryloyl inhibit vein graft restenosis by enhancing endothelial functions. J Nanobiotechnology. 2023;21(1):380. [78] CHENG G, WANG X, LI Y, et al. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling. Stem Cell Res Ther. 2017;8(1):34. [79] 刘指挥.间充质干细胞外泌体对血管损伤后新生内膜形成的影响与机制研究[D].重庆:西南大学,2020. [80] 郑仕杰,周敬群,杨维华,等.血管损伤后TGF-β1/Smad信号通路在诱导BMSCs分化参与血管再狭窄的相关性研究[J].中国医药科学,2019,9(17):50-54. [81] ZENG W, WEN C, WU Y, et al. The use of BDNF to enhance the patency rate of small-diameter tissue-engineered blood vessels through stem cell homing mechanisms. Biomaterials. 2012;33(2):473-484. [82] ZHUANG Y, ZHANG C, CHENG M, et al. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater. 2020;6(6):1791-1809. [83] CHEN Y, CAO J, PENG W, et al. Neurotrophin-3 accelerates reendothelialization through inducing EPC mobilization and homing. Open Life Sci. 2020;15(1):241-250. [84] LIU P, ZHOU B, GU D, et al. Endothelial progenitor cell therapy in atherosclerosis: a double-edged sword? Ageing Res Rev. 2009 ;8(2):83-93. [85] HU A, SHUAI Z, LIU J, et al. Ginsenoside Rg1 prevents vascular intimal hyperplasia involved by SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes in a rat balloon injury. J Ethnopharmacol. 2020;260:113046. [86] LEE CH, LIU KS, ROTH JG, et al. Telmisartan Loaded Nanofibers Enhance Re-Endothelialization and Inhibit Neointimal Hyperplasia. Pharmaceutics. 2021;13(11):1756. [87] FUKAWA N, UEDA T, OGOSHI T, et al. Vascular Endothelial Repair and the Influence of Circulating Antiplatelet Drugs in a Carotid Coil Model. J Cent Nerv Syst Dis. 2021;13:11795735211011786. [88] XU S, HU A, CHEN J, et al. The role of calcium-sensing receptor in ginsenoside Rg1 promoting reendothelialization to inhibit intimal hyperplasia after balloon injury. Biomed Pharmacother. 2023;163:114843. [89] SALYBEKOV AA, KOBAYASHI S, ASAHARA T. Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int J Mol Sci. 2022;23(14):7697. [90] XIAO ST, KUANG CY. Endothelial progenitor cells and coronary artery disease: Current concepts and future research directions. World J Clin Cases. 2021;9(30):8953-8966. [91] CHRISTOPHER AC, VENKATESAN V, KARUPPUSAMY KV, et al. Preferential Expansion of Human CD34+CD133+CD90+ Hematopoietic Stem Cells Enhances Gene-Modified Cell Frequency for Gene Therapy. Hum Gene Ther. 2022;33(3-4):188-201. [92] LAI YS, WAHYUNINGTYAS R, AUI SP, et al. Autocrine VEGF signalling on M2 macrophages regulates PD-L1 expression for immunomodulation of T cells. J Cell Mol Med. 2019;23(2):1257-1267. [93] ROTMANS JI, HEYLIGERS JM, VERHAGEN HJ, et al. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation. 2005;112(1):12-18. [94] CHEN H, WANG X, ZHOU Q, et al. Preparation of Vascular Endothelial Cadherin Loaded-Amphoteric Copolymer Decorated Coronary Stents for Anticoagulation and Endothelialization. Langmuir. 2017;33(46): 13430-13437. [95] KÄMMERER PW, HELLER M, BRIEGER J, et al. Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation. Eur Cell Mater. 2011;21: 364-372. [96] SÁNCHEZ-CORTÉS J, MRKSICH M. The platelet integrin alphaIIbbeta3 binds to the RGD and AGD motifs in fibrinogen. Chem Biol. 2009;16(9): 990-1000. [97] HAO D, LIN J, LIU R, et al. A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioact Mater. 2023;28:467-479. [98] HAO D, XIAO W, LIU R, et al. Discovery and Characterization of a Potent and Specific Peptide Ligand Targeting Endothelial Progenitor Cells and Endothelial Cells for Tissue Regeneration. ACS Chem Biol. 2017;12(4):1075-1086. [99] DUAN Y, YU S, XU P, et al. Co-immobilization of CD133 antibodies, vascular endothelial growth factors, and REDV peptide promotes capture, proliferation, and differentiation of endothelial progenitor cells. Acta Biomater. 2019;96:137-148. [100] YANG Z, ZHAO X, HAO R, et al. Bioclickable and mussel adhesive peptide mimics for engineering vascular stent surfaces. Proc Natl Acad Sci U S A. 2020;117(28):16127-16137. [101] LEE JS, LEE K, MOON SH, et al. Mussel-inspired cell-adhesion peptide modification for enhanced endothelialization of decellularized blood vessels. Macromol Biosci. 2014;14(8):1181-1189. [102] II M, TAKESHITA K, IBUSUKI K, et al. Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice. Circulation. 2010;121(9):1104-1112. [103] CHEN W, ZENG W, SUN J, et al. Construction of an Aptamer-SiRNA Chimera-Modified Tissue-Engineered Blood Vessel for Cell-Type-Specific Capture and Delivery. ACS Nano. 2015;9(6):6069-6076. [104] LI L, CAO Z, ZHANG C, et al. A Versatile Passivated Protein-Adsorption Platform for Rapid Healing of Vascular Stents by Modulating the Microenvironment. Adv Funct Mater. 2024;34:2312243. [105] DE MEL A, NAGHAVI N, COUSINS BG, et al. Nitric oxide-eluting nanocomposite for cardiovascular implants. J Mater Sci Mater Med. 2014;25(3):917-929. [106] WANG F, QIN K, WANG K, et al. Nitric oxide improves regeneration and prevents calcification in bio-hybrid vascular grafts via regulation of vascular stem/progenitor cells. Cell Rep. 2022;39(12):110981. [107] ANTÓNIO N, SOARES A, FERNANDES R, et al. Endothelial progenitor cells in diabetic patients with myocardial infarction - can statins improve their function? Eur J Pharmacol. 2014;741:25-36. [108] LIU H, BAO P, LI L, et al. Pitavastatin nanoparticle-engineered endothelial progenitor cells repair injured vessels. Sci Rep. 2017;7(1): 18067. [109] LU HK, HUANG Y, LIANG XY, et al. Pinellia ternata attenuates carotid artery intimal hyperplasia and increases endothelial progenitor cell activity via the PI3K/Akt signalling pathway in wire-injured rats. Pharm Biol. 2020;58(1):1184-1191. [110] LEE FY, SUN CK, SUNG PH, et al. Daily melatonin protects the endothelial lineage and functional integrity against the aging process, oxidative stress, and toxic environment and restores blood flow in critical limb ischemia area in mice. J Pineal Res. 2018;65(2):e12489. [111] YANG L, LI X, WU Y, et al. Preparation of PU/Fibrin Vascular Scaffold with Good Biomechanical Properties and Evaluation of Its Performance in vitro and in vivo. Int J Nanomedicine. 2020;15:8697-8715. [112] WU X, WANG G, TANG C, et al. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent. J Biomed Mater Res A. 2011;98(3):442-449. [113] HWANG CW, JOHNSTON PV, GERSTENBLITH G, et al. Stem cell impregnated nanofiber stent sleeve for on-stent production and intravascular delivery of paracrine factors. Biomaterials. 2015;52: 318-326. [114] LIAO L, SHI B, CHANG H, et al. Heparin improves BMSC cell therapy: Anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy. Theranostics. 2017;7(1):106-116. [115] LING L, CAMILLERI ET, HELLEDIE T, et al. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells. Gene. 2016;576(1 Pt 2):292-303. [116] JOSHI A, XU Z, IKEGAMI Y, et al. Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling. Int J Biol Macromol. 2020;151:186-192. [117] RANGASAMI VK, ASAWA K, TERAMURA Y, et al. Biomimetic polyelectrolyte coating of stem cells suppresses thrombotic activation and enhances its survival and function. Biomater Adv. 2023;147: 213331. [118] WEI Y, WU Y, ZHAO R, et al. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials. 2019;204:13-24. [119] HU S, LI Z, SHEN D, et al. Exosome-eluting stents for vascular healing after ischaemic injury. Nat Biomed Eng. 2021;5(10):1174-1188. [120] ZOU D, YANG P, LIU J, et al. Exosome-Loaded Pro-efferocytic Vascular Stent with Lp-PLA2-Triggered Release for Preventing In-Stent Restenosis. ACS Nano. 2022;16(9):14925-14941. [121] PARK KS, KANG SN, KIM DH, et al. Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomater. 2020;111:91-101. [122] WANG CH, CHERNG WJ, YANG NI, et al. Late-outgrowth endothelial cells attenuate intimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arterioscler Thromb Vasc Biol. 2008;28(1):54-60. [123] THANASKODY K, JUSOP AS, TYE GJ, et al. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol. 2022;10:1005926. [124] GAO A, HANG R, LI W, et al. Linker-free covalent immobilization of heparin, SDF-1α, and CD47 on PTFE surface for antithrombogenicity, endothelialization and anti-inflammation. Biomaterials. 2017;140: 201-211. [125] PELLICCIA F, ZIMARINO M, DE LUCA G, et al. Endothelial Progenitor Cells in Coronary Artery Disease: From Bench to Bedside. Stem Cells Transl Med. 2022;11(5):451-460. [126] XIANG Q, TIAN F, XU J, et al. New insight into dyslipidemia-induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc. 2022; 97(5):1844-1867. [127] BASMAEIL YS, BAHATTAB E, ALSHABIBI MA, et al. Human Decidua Basalis mesenchymal stem/stromal cells reverse the damaging effects of high level of glucose on endothelial cells in vitro. J Cell Mol Med. 2021;25(4):1838-1850. |
[1] | 张艺博, 卢健棋, 毛美玲, 庞 延, 董 礼, 杨尚冰, 肖 湘. 类风湿关节炎与冠状动脉粥样硬化的因果关系:GWAS数据库血清代谢物和炎症因子数据[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[2] | 杨治航, 孙祖延, 黄文良, 万 喻, 陈仕达, 邓 江. 神经生长因子促进兔骨髓间充质干细胞软骨分化并抑制肥大分化[J]. 中国组织工程研究, 2025, 29(7): 1336-1342. |
[3] | 胡涛涛, 刘 兵, 陈 诚, 殷宗银, 阚道洪, 倪 杰, 叶凌霄, 郑祥兵, 严 敏, 邹 勇. 过表达神经调节蛋白1的人羊膜间充质干细胞促进小鼠皮肤创面愈合[J]. 中国组织工程研究, 2025, 29(7): 1343-1349. |
[4] | 金 凯, 唐 婷, 李美乐, 谢裕安. 人脐带间充质干细胞条件培养基及外泌体对肝癌细胞增殖、迁移、侵袭和凋亡的影响[J]. 中国组织工程研究, 2025, 29(7): 1350-1355. |
[5] | 李帝均, 酒精卫, 刘海峰, 闫 磊, 李松岩, 王 斌. 明胶三维微球装载人脐带间充质干细胞修复慢性肌腱病[J]. 中国组织工程研究, 2025, 29(7): 1356-1362. |
[6] | 刘 琪, 李林臻, 李玉生, 焦泓焯, 杨 程, 张君涛. 淫羊藿苷含药血清促进3种细胞共培养体系中软骨细胞增殖和干细胞成软骨分化[J]. 中国组织工程研究, 2025, 29(7): 1371-1379. |
[7] | 章镇宇, 梁秋健, 杨 军, 韦相宇, 蒋 捷, 黄林科, 谭 桢. 新橙皮苷治疗骨质疏松症的靶点及对骨髓间充质干细胞成骨分化的作用[J]. 中国组织工程研究, 2025, 29(7): 1437-1447. |
[8] | 李佳林, 张耀东, 娄艳茹, 于 洋, 杨 蕊. 间充质干细胞分泌组发挥作用的分子机制[J]. 中国组织工程研究, 2025, 29(7): 1512-1522. |
[9] | 何 波, 陈 文, 马岁录, 何志军, 宋 渊, 李金鹏, 刘 涛, 魏晓涛, 王威威, 谢 婧. 皮瓣缺血再灌注损伤的发病机制及治疗进展[J]. 中国组织工程研究, 2025, 29(6): 1230-1238. |
[10] | 高 洋, 秦合伟, 刘丹丹. ACSL4介导铁死亡及在动脉粥样硬化性心血管病中的潜在作用[J]. 中国组织工程研究, 2025, 29(6): 1239-1247. |
[11] | 孙现娟, 王秋花, 张锦艺, 杨杨杨, 王文双, 张晓晴. 不同静电纺丝膜上骨髓间充质干细胞的黏附、增殖与成血管平滑肌分化[J]. 中国组织工程研究, 2025, 29(4): 661-669. |
[12] | 郑伊桐, 汪永新, 刘 文, 阿木吉特, 秦 虎. 神经内镜下人脐带间充质干细胞外泌体鞘内移植修复脊髓损伤的作用机制[J]. 中国组织工程研究, 2025, 29(36): 7743-7751. |
[13] | 郭 昭, 庄浩岩, 史学文. 间充质干细胞衍生外泌体在结直肠癌治疗中的作用[J]. 中国组织工程研究, 2025, 29(36): 7872-7879. |
[14] | 葛 霄, 赵状状, 郭舒瑜, 徐荣耀. HOXA10基因修饰骨髓间充质干细胞促进骨再生[J]. 中国组织工程研究, 2025, 29(36): 7701-7708. |
[15] | 张熊劲夫, 陈奕达, 程歆怡, 刘岱珲, 施 勤. 年轻大鼠骨髓间充质干细胞来源外泌体逆转老龄大鼠骨髓间充质干细胞衰老[J]. 中国组织工程研究, 2025, 29(36): 7709-7718. |
1.1.6 检索策略 以PubMed数据库为例,具体检索策略见图1。
1.1.7 检索文献量 中文文献5篇,英文文献122篇。
1.3 文献质量评估与数据提取 首先根据研究的主题和目的进行文献检索和初步分析,确定论述具体要点;其次根据要点进行文献筛选,优先选择来自权威学术期刊或由专业机构发布的文献,以确保文献质量;然后对所选文献选择性地全文粗读或精读,评估其研究设计、方法、样本、数据和分析过程等方面的严谨性,同时关注文献的研究对象、样本量、实验操作等细节,以确定数据的可靠性,对于重复或类似主题的文献观点进行筛选、合并、双重检查和验证,检查数据或观点的一致性和可信度;最后,对最终筛选出的127篇文献的数据、观点进行分析、整理和汇总,其中中文文献5篇(CNKI数据库1篇,万方数据库4篇),英文文献122篇(PubMed数据库106篇,Web of Science数据库16篇)。文献筛选流程见图2。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
文题释义:
血管支架相关疾病:①使用血管支架介入治疗的疾病(文中主要介绍的是动脉粥样硬化);②血管支架植入损伤并发症(血栓、内膜增生)。#br#内皮祖细胞与间充质干细胞治疗血管支架相关疾病:①内皮祖细胞、间充质干细胞治疗动脉粥样硬化;②内皮祖细胞、间充质干细胞治疗血管支架植入损伤并发症;③基于内皮祖细胞、间充质干细胞的血管支架用于治疗血管疾病。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
内皮祖细胞和间充质干细胞作为两大成体干细胞,通过分化或旁分泌作用在血管疾病治疗中发挥着重要作用。目前较多研究通过注射内皮祖细胞或间充质干细胞来治疗血管疾病如动脉粥样硬化及支架植入损伤并发症,并由此发现了这些干细胞的治疗作用机制。但由于静脉输注成体干细胞存在治疗效率低、靶向性差、不良反应发生率较高等问题,因此成体干细胞逐渐被开发应用于支架表面,近年来的研究表明,基于内皮祖细胞和间充质干细胞的血管支架表现出良好的治疗效果。这种治疗方法可以提高成体干细胞治疗的靶向性,高效作用于损伤部位修复损伤的血管内皮。
#br#
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||