中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (30): 4763-4769.doi: 10.12307/2024.645

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

三种内固定装置应用于PauwelsⅢ型股骨颈骨折的有限元分析

齐远博1,李建涛2,刘道宏2,3,陶  笙2,3,王道峰2,吴  杰3   

  1. 1河北北方学院,河北省张家口市   075000;2解放军总医院骨科医学部,北京市   100853;3解放军总医院第八医学中心骨科,北京市   100091
  • 收稿日期:2023-06-01 接受日期:2023-09-02 出版日期:2024-10-28 发布日期:2023-12-23
  • 通讯作者: 刘道宏,副教授,副主任医师,解放军总医院骨科医学部,北京市 100853;解放军总医院第八医学中心骨科,北京市 100091
  • 作者简介:齐远博,男,1994年生,黑龙江省海林市人,汉族,河北北方学院在读硕士,主要从事骨创伤方面研究。 李建涛,男,1989年生,汉族,副主任医师,主要从事数字骨科、人工智能、力学仿真等方面研究。
  • 基金资助:
    国家重点研发计划(2019YFC0840705);合作单位项目负责人:刘道宏

Three internal fixation devices used for finite element analysis of Pauwels type III femoral neck fractures

Qi Yuanbo1, Li Jiantao2, Liu Daohong2, 3, Tao Sheng2, 3, Wang Daofeng2, Wu Jie3   

  1. 1Hebei North University, Zhangjiakou 075000, Hebei Province, China; 2Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; 3Department of Orthopedics, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
  • Received:2023-06-01 Accepted:2023-09-02 Online:2024-10-28 Published:2023-12-23
  • Contact: Liu Daohong, Associate professor, Associate chief physician, Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; Department of Orthopedics, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
  • About author:Qi Yuanbo, Master candidate, Hebei North University, Zhangjiakou 075000, Hebei Province, China Li Jiantao, Associate chief physician, Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
  • Supported by:
    China National Key Research & Development Program, No. 2019YFC0840705 (to LDH)

摘要:


文题释义:

股骨颈骨折Pauwels分型:基于骨折线方向进行划分,Pauwels角即远端骨折线与两髂嵴联线所形成的角度,具有判定股骨颈骨折是否稳定的意义。Ⅰ型为外展型(Pauwels角≤ 30°);Ⅱ型为中间型(30° < Pauwels 角 ≤ 50°);Ⅲ型为内收型(Pauwels 角 > 50°)。
有限元分析方法:是一种运用数学近似的形式对真实物理系统进行模拟的方法,最初被应用于航空工程领域,随着电子计算机技术的迅速发展与普及,使其广泛地应用在科学研究中,并与医学生物力学交叉融合;该方法依托于医学影像处理软件、扫描模型处理软件、三维制图软件、有限元分析软件等计算机操作平台的共同协作,对模拟的对象进行数据分析和研究计算。


背景:目前临床上对于Pauwels Ⅲ型股骨颈骨折的内固定选用仍存在争议,选择提供稳定固定强度的内固定是实现Pauwels Ⅲ型骨折固定的关键基础。

目的:利用三维有限元分析法测试3种类型内固定应用于Pauwels Ⅲ型股骨颈骨折的生物力学强度差异,为其临床治疗提供借鉴。
方法:使用一名健康男性志愿者的左股骨CT数据,在Mimics软件中重建出一个完整的股骨及其骨松质,运用Geomagic studio软件进行逆向建模,并在UG-NX软件中创建出倒三角空心螺钉、动力髋螺钉、股骨颈动力交叉钉系统;将3种内固定模型分别装配至股骨模型上;通过Hypermesh软件模拟Pauwels Ⅲ型股骨颈骨折;最后应用Abaqus软件进行有限元实验分析,分析比较不同内固定系统固定股骨颈骨折所产生的应力分布、应力峰值、应变情况及位移分布。

结果与结论:①股骨近端骨块的应力主要分布在骨折端附近股骨颈下方区域,动力髋螺钉组的应力峰值最大,股骨颈动力交叉钉系统组最小;②内固定装置的应力分布主要集中在骨折线附近的螺钉表面,股骨颈动力交叉钉系统组的应力峰值最大,动力髋螺钉组最小;③股骨近端骨块的主要应变场分布于骨与螺钉接触的上表面区域,股骨颈动力交叉钉系统组的屈服应变最小,倒三角空心螺钉组最大;④内固定装置模型的主要应变场分布于股骨颈螺钉的上表面,股骨颈动力交叉钉系统组的屈服应变最小,倒三角空心螺钉组最大;⑤3种股骨颈骨折内固定模型中的股骨、近端骨块、远端骨块、内固定装置以及内固定与股骨整体的位移分布值均由近端到远端逐渐减小,其中股骨颈动力交叉钉系统固定组的位移峰值最大,动力髋螺钉组最小;⑥结果表明,在固定Pauwels Ⅲ型股骨颈骨折时,股骨颈动力交叉钉系统的应力分布更为均匀、力学传导特性更好,其承受了较低的屈服应变、较高的应力和较高的位移;具有相对更良好的生物力学稳定性,能为骨折的愈合提供优越的力学环境。

https://orcid.org/0009-0008-6114-6536 (齐远博)

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 骨折, 股骨颈骨折, 内固定, 生物力学, 有限元分析

Abstract: BACKGROUND: At present, there is still controversy in clinical practice about the choice of internal fixation of Pauwels type III femoral neck fracture, and the selection of internal fixation that provides stable fixation strength is the key basis for achieving Pauwels type III fracture fixation.
OBJECTIVE: The three-dimensional finite element analysis method was used to test the difference in biomechanical strength of three types of internal fixation in Pauwels type III femoral neck fracture, which provided a reference for its clinical treatment.
METHODS: Using the CT data of the left femur of a healthy male volunteer, a complete femur and its cancellous bone were reconstructed in Mimics software, and Geomagic studio software was used for reverse modeling. Cannulated compression screw, dynamic hip screw, and femoral neck system were created in UG-NX software. Three kinds of internal fixation models were assembled on the femur model, and Pauwels type III femoral neck fracture was simulated by Hypermesh software. Finally, Abaqus software was used to carry out finite element experimental analysis to analyze and compare the stress distribution, stress peak, strain, and displacement distribution caused by fixed femoral neck fracture of different internal fixation systems.
RESULTS AND CONCLUSION: (1) The stress of the proximal femur bone mass was mainly distributed in the area below the femoral neck near the fracture end, with the highest stress peak in the dynamic hip screw group and the smallest in the femoral neck system group. (2) The stress distribution of the internal fixation device was mainly concentrated on the screw surface near the fracture line, with the highest stress peak in the femoral neck system group and the smallest in the dynamic hip screw group. (3) The main strain field of the proximal femur bone mass was distributed in the upper surface area where the bone and screw contacted, and the yield strain was the smallest in the femoral neck system group and the largest in the cannulated compression screw group. (4) The main strain field of the internal fixation device model was distributed on the upper surface of the femoral neck screw, with the yield strain being the smallest in the femoral neck system group and the largest in the cannulated compression screw group. (5) The displacement distribution values of femur, proximal bone mass, distal bone block, internal fixation device and internal fixation with the femur as a whole in the three femoral neck fracture internal fixation models decreased gradually from proximal to distal, and the peak displacement of the femoral neck system group was the largest and the lowest in the dynamic hip screw group. (6) The results showed that when the Pauwels type III femoral neck fracture was fixed, the stress distribution of femoral neck system was more uniform, the mechanical conduction characteristics were better, and it was subjected to lower yield strain, higher stress and higher displacement. It has relatively better biomechanical stability and can provide a superior mechanical environment for fracture healing.

Key words: fracture, femoral neck fracture, internal fixation, biomechanics, finite element analysis

中图分类号: