中国组织工程研究 ›› 2010, Vol. 14 ›› Issue (29): 5498-5504.doi: 10.3969/j.issn.1673-8225.2010.29.044

• 生物材料基础实验 basic experiments of biomaterials • 上一篇    下一篇

组氨酸和银离子间的相互作用

游玉华1,2,张朝平1   

  1. 1贵州大学化学系,贵州省贵阳市  550025;2贵州师范大学地理与环境科学学院,贵州省贵阳市 550001
  • 出版日期:2010-07-16 发布日期:2010-07-16
  • 作者简介:游玉华★,女,1976年生,江西省南昌市人,汉族,2006年贵州大学理学院毕业,硕士,实验师,主要从事生物无机化学研究。
  • 基金资助:

    贵州省优秀教育人才省长基金[2004(105)]。

Interaction between silver ions and histidine

You Yu-hua 1,2, Zhang Chao-ping1   

  1. 1 Department of Chemistry, Guizhou University, Guiyang   550025, Guizhou Province, China; 2 School of Geography and Environment Science, Guizhou Normal University, Guiyang   550001, Guizhou Province, China
  • Online:2010-07-16 Published:2010-07-16
  • About author:You Yu-hua★, Master, Experimentalist, Department of Chemistry, Guizhou University, Guiyang 550025, Guizhou Province, China; School of Geography and Environment Science, Guizhou Normal University, Guiyang 550001, Guizhou Province, China cpingzhang@163.com
  • Supported by:

    the Nomarch Special Fund for Excellent Tatents of Science and Technology Education of Guizhou Province, No. 2004(105)*

摘要:

背景:以往研究多采用紫外/可见光谱、电导和电泳等方法研究金属离子与氨基酸之间的作用,但以UV-Vis光谱、荧光光谱方法研究L-组氨酸同银离子在水溶液中反应的机制少见报道。
目的:采用UV-Vis光谱、荧光光谱方法研究L-组氨酸同银离子的作用机制。
方法:用UV-Vis、荧光光谱法研究了组氨酸同银离子间的相互作用,考察介质的pH、Ag+离子、组氨酸、甲醛、十二烷基硫酸钠、三羟甲基氨基甲烷浓度以及光照强度和光照时间等条件对组氨酸同Ag+离子作用的影响,探究反应机制。
结果与结论:pH电位滴定法测定L-组氨酸离解常数为9.21,用半 n(_) 法求得组氨酸-Ag的逐级稳定常数为㏒K1=5.56,㏒K2=4.05,20 ℃时组氨酸-Ag体系的电动电位为2.10×10-4 V。根据pH电位滴定法和Iob法确定该配合物的组成为组氨酸∶Ag=2∶1。同组氨酸相比,组氨酸-Ag体系在295.3 nm有一肩峰,它对应于咪唑环产生的π-π* 跃迁。而242.0 nm左右出现的吸收峰属于组氨酸中C=O的n-π* 跃迁。组氨酸-Ag体系产生的荧光发射光谱归属为5D0→7F2电子偶极跃迁。同相同条件下的参比液相比,不仅发射波长蓝移,而且导致荧光猝灭。结果表明,组氨酸中的咪唑环参与了同银离子的成键作用。组氨酸同银离子发生反应后,首先生成六配位配合物,然后银离子再被甲醛还原为超细银粒而被组氨酸所包裹。

关键词: 组氨酸, 银, 紫外-可见光谱, 荧光光谱, 光化学, 生物材料基础实验

Abstract:

BACKGROUND: Traditionally, UV/visible spectra, conductivity, electrophoresis and other methods are commonly applied for studying the interaction of metal ions and amino acids, but UV-Vis spectroscopy and fluorescence spectroscopy for L-histidine reacted with silver ion in aqueous solution is rarely reported.
OBJECTIVE: To investigate the interaction between silver ion and histidine using UV/VIS and fluorescence spectra.
METHODS: The influence of pH, multicomponent concentration such as histidine, silver ion, formaldehyde, sodium dodecyl sulfate and trihydroxymethyl aminomethane, as well as illumination strength and time, on the interaction between silver ion and histidine were investigated, and the mechanism of reaction was also explored.
RESULTS AND CONCLUSION: Applied pH potentiometer titration method, the dissociation constants of histidine was defined 9.21. The stepwise stability constants of histidine-silver was ㏒K1=5.56 and ㏒K2=4.05, respectively by using half n(_) method. At    20 ℃, the electric potential of histidine-silver system was 2.10×10-4 V. According to pH potentiometer titration and Iob method, the compound was consisted of histidine: Ag = 2:1. Compared with histidine, histidine-silver systems reached a shoulder peak at 295.3 nm, which was assigned to conjugate double bond of imidazole ring that easily generated π-π* transition. And an absorption peak close to 242 nm can be assigned to n-π* transition of the C=O group of the histidine-silver. The fluorescence emission spectra of histidine-silver systems belonged to 5D0→7F2 electric dipole transition. Compared with reference solutions under the same conditions, it not only emitted wavelengths blue shift, but also induced fluorescence quenching. Results showed that, imidazole ring was involved in the bonding action with silver ion. The reaction process is to firstly generate six-coordination complex, secondly reduce the silver ion into ultrafine silver particles which are bound by histidine.

中图分类号: