Chinese Journal of Tissue Engineering Research ›› 2026, Vol. 30 ›› Issue (8): 2001-2013.doi: 10.12307/2026.071
Previous Articles Next Articles
Dong Chunyang1, Zhou Tianen1, Mo Mengxue2, Lyu Wenquan3, Gao Ming2, Zhu Ruikai3, Gao Zhiwei2
Received:
2024-11-15
Accepted:
2025-02-06
Online:
2026-03-18
Published:
2025-07-17
Contact:
Gao Zhiwei, Physician, Life Sciences Research Institute, Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
Zhu Ruikai, Physician, Guangxi Hospital Division of The First Affiliated Hospital of Sun Yat-sen University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
About author:
Dong Chunyang, MS, Attending physician, First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
Zhou Tianen, MD, Chief physician, First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
Supported by:
CLC Number:
Dong Chunyang, Zhou Tianen, Mo Mengxue, Lyu Wenquan, Gao Ming, Zhu Ruikai, Gao Zhiwei. Action mechanism of metformin combined with Eomecon chionantha Hance dressing in treatment of deep second-degree burn wounds#br#
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 二甲双胍与血水草处理浓度筛选结果 不同浓度二甲双胍、血水草对L929细胞、RAW264.7细胞生长的影响,见图1。CCK-8检测结果显示,0.1,0.5,1,5,10,50 mmol/L二甲双胍对RAW264.7细胞生长均表现出较明显的抑制作用,而对L929细胞的生长抑制作用较弱;0.1,0.5,1,5,10 mmol/L血水草处理后RAW264.7细胞和L929细胞的存活率均在70%以上,血水草对RAW264.7细胞、L929细胞增殖的抑制作用在浓度低于5 mmol/L时并不明显。二甲双胍对于RAW264.7细胞的IC50为(14.28±0.59) mmol/L,对于L929细胞的IC50为(54.15±1.20) mmol/L;血水草对于RAW264.7细胞的IC50为(164.22±1.56) mmol/L,对L929细胞IC50为(202.75±10.02) mmol/L。因此,此次研究选择二甲双胍低剂量的应用浓度为10 mmol/L,高剂量的应用浓度为100 mmol/L;血水草应用浓度为200 μmol/L。 "
2.7 血水草的止血性能评估 空白对照组与血水草组大鼠断尾模型和肝脏裂口模型第15,30,60秒的失血量,见图11。空白对照组和血水草组尾部失血量分别为(50.3±6.1) mg和(9.8±4.4) mg,肝脏失血量分别为(83.7±8.9) mg和(12.3±4.1) mg,两组间尾部失血量与肝脏失血量比较差异有显著性意义(P < 0.05)。空白对照组和血水草组大鼠断尾模型的止血时间分别为(141.7±12.3) s和(54.7±8.1) s,肝脏裂口模型止血时间分别为(303.8±7.9) s和(84.2±10.4) s,两组间断模型止血时间与肝脏裂口模型止血时间比较差异有显著性意义(P < 0.05),说明血水草可以实现出血伤口的快速止血。 "
[1] JI S, XIAO S, XIA Z. Chinese Burn Association Tissue Repair of Burns and Trauma Committee, Cross-Straits Medicine Exchange Association of China. Consensus on the treatment of second-degree burn wounds (2024 edition). Burns Trauma. 2024;12:tkad061. [2] 钟淑贤,石雨晴,杨亚兰,等.软聚硅酮银离子敷料应用于烧伤创面的效果评价[J].中国组织工程研究,2020,24(22):3602-3608. [3] NGUYEN SMT, RUPPRECHT CP, HAQUE A, et al. Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators, Endothelial Gap Junctions and Beyond. Int J Mol Sci. 2021;22(15):7785. [4] NIE HZ, ZHOU YW, YU XH, et al. Intestinal epithelial Krüppel-like factor 4 alleviates endotoxemia and atherosclerosis through improving NF-κB/miR-34a-mediated intestinal permeability. Acta Pharmacol Sin. 2024;45(6):1189-1200. [5] KIM SH, OH J, ROH WS, et al. Pellino-1 promotes intrinsic activation of skin-resident IL-17A-producing T cells in psoriasis. J Allergy Clin Immunol. 2023;151(5):1317-1328. [6] 田勇,周颖,古雍翔,等.二甲双胍对脓毒症心肌损伤保护机制的研究进展[J].东南大学学报,2024,43(4):623-628. [7] 刘铭,刘铭,田大伦,等.血水草生态解剖学特征及其药理功能研究进展[J]. 生态学报,2009,29(3):1525-1534. [8] MARKIEWICZ-GOSPODAREK A, KOZIOL M, TOBIASZ M, et al. Burn Wound Healing: Clinical Complications, Medical Care, Treatment, and Dressing Types: The Current State of Knowledge for Clinical Practice. Int J Environ Res Public Health. 2022;19(3):1338. [9] ZHANG Y, LI M, WANG Y, et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater. 2023;26:323-336. [10] LIANG Y, LI M, YANG Y, et al. pH/Glucose Dual Responsive Metformin Release Hydrogel Dressings with Adhesion and Self-Healing via Dual-Dynamic Bonding for Athletic Diabetic Foot Wound Healing. ACS Nano. 2022;16(2):3194-3207. [11] 李亚萍,万小丽,张丹.早期护理对深Ⅱ度烧伤创面愈合效果的影响[J].生命科学仪器,2024,22(5):203-205. [12] 朱佩红,李艳艳,龚焕,等.血水草化学成分的研究[J].中成药,2017, 39(5):980-983. [13] 樊轻亚,汪学猛.微波辅助-分散固相萃取/超高效液相色谱-串联质谱法测定血水草中8种生物碱[J]. 分析科学学报,2023,39(4):431-438. [14] 魏科东,吴婉婉,任涵,等.基于PI3K/Akt信号通路探讨肉桂酸保护H2O2诱导H9c2细胞损伤的作用机制[J].海南医学院学报,2024,30(14): 1048-1058. [15] SOMENSI N, RABELO TK, GUIMARAES AG, et al. Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. Int Immunopharmacol. 2019;75:105743. [16] 张郑洁,李漓,欧阳琳,等.血水草化学成分及其抗炎活性[J].中成药, 2023,45(8):2572-2578. [17] ZHANG Z, ZHANG G, ZHANG X, et al. The complete chloroplast genome sequence and phylogenetic relationship analysis of Eomecon chionantha, one species unique to China. J Plant Res. 2024;137(4):575-587. [18] SUN Y, BAI YP, WANG DG, et al. Protective effects of metformin on pancreatic β-cell ferroptosis in type 2 diabetes in vivo. Biomed Pharmacother. 2023;168:115835. [19] BHARATH LP, AGRAWAL M, MCCAMBRIDGE G, et al. Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. Cell Metab. 2020;32(1):44-55. [20] XIAN H, LIU Y, RUNDBERG NILSSON A, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity. 2021;54(7):1463-1477. [21] 高文分,马金蓉,刘继华,等.蒙自藜芦中的甾体生物碱及抗炎活性研究[J].中南药学,2024,22(7):1685-1691. [22] 陈旭,伊蓝坤,白玉彬,等.植物提取物协同抗生素抗菌作用的研究进展[J].中国兽医科学,2025,55(1):94-100. [23] GU C, WANG YQ, SU BJ, et al. Triterpenoids and triterpenoid saponins from Vitex negundo and their anti-inflammatory activities. Phytochemistry. 2024;222:114068. [24] DUAN X, LIU N, LV K, et al. Synthesis and Anti-Inflammatory Activity of Ferulic Acid-Sesquiterpene Lactone Hybrids. Molecules. 2024;29(5):936. [25] FANG Y, XIU L, XIAO D, et al. Sandwich-Structured Nanofiber Dressings Containing MgB2 and Metformin Hydrochloride With ROS Scavenging and Antibacterial Properties for Wound Healing in Diabetic Infections. Adv Healthc Mater. 2024;13(31):e2402452. [26] OWOR RO, BEDANE KG, OPENDA YI, et al. Synergistic anti-inflammatory activities of a new flavone and other flavonoids from Tephrosia hildebrandtii vatke. Nat Prod Res. 2021;35(22):4486-4493. [27] SUN Y, JI X, CUI J, et al. Synthesis, Characterization, and the Antioxidant Activity of Phenolic Acid Chitooligosaccharide Derivatives. Mar Drugs. 2022; 20(8):489. [28] SUN Y, CUI J, TIAN L, et al. Phenolic Acid Functional Quaternized Chitooligosaccharide Derivatives: Preparation, Characterization, Antioxidant, Antibacterial, and Antifungal Activity. Mar Drugs. 2023;21(10):535. [29] LI Q, SONG H, LI S, et al. Macrophage metabolism reprogramming EGCG-Cu coordination capsules delivered in polyzwitterionic hydrogel for burn wound healing and regeneration. Bioact Mater. 2023;29:251-264. [30] HASANNASAB M, NOURMOHAMMADI J, DEHGHAN MM, et al. Immobilization of bromelain and ZnO nanoparticles on silk fibroin nanofibers as an antibacterial and anti-inflammatory burn dressing. Int J Pharm. 2021;610:121227. [31] LIAO CR, WANG SN, ZHU SY, et al. Advanced oxidation protein products increase TNF-α and IL-1β expression in chondrocytes via NADPH oxidase 4 and accelerate cartilage degeneration in osteoarthritis progression. Redox Biol. 2020;28:101306. [32] 李茂清,贾鸿飞,高学坡.烧伤患者血清ICAM-1、IL-10、TNF-α水平变化及与创面愈合程度的关系分析 [J].中国美容整形外科杂志,2024, 35(3):145-149. [33] TIAN S, GUO L, SONG Y. Radix Salvia miltiorrhiza Ameliorates Burn Injuries by Reducing Inflammation and Promoting Wound Healing. J Inflamm Res. 2023;16:4251-4263. [34] 苏小明,郑炎,田美媛,等.缺氧对不同组织线粒体功能影响的研究进展[J].安徽医药,2022,26(7):1273-1276. [35] HAO T, YU J, WU Z, et al. Hypoxia-reprogramed megamitochondrion contacts and engulfs lysosome to mediate mitochondrial self-digestion. Nat Commun. 2023;14(1):4105. [36] 田勇,周颖,古雍翔,等.二甲双胍诱导心肌细胞自噬对脓毒症小鼠心肌损伤的保护机制[J].安徽医科大学学报,2024,59(1):92-98. [37] 伍义兰,赵勇,刘洪艳,等.二甲双胍对大鼠肺纤维化模型肺组织的影响[J].中国临床药理学杂志,2020,36(18):2788-2790. [38] SINGH N, NAVEENJUMAR SK, GEETHIKA M, et al. A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angew Chem Int Ed Engl. 2021;60(6):3121-3130. [39] VRINGER E, HEILIG R, RILEY JS, et al. Mitochondrial outer membrane integrity regulates a ubiquitin-dependent and NF-κB-mediated inflammatory response. EMBO J. 2024;43(6):904-930. [40] XIAN H, LIU Y, RUNDBERG NILSSON A, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity. 2021;54(7):1463-1477.e11. [41] CHEN P, GUO Z, LEI J, et al. Pomegranate polyphenol punicalin ameliorates lipopolysaccharide-induced memory impairment, behavioral disorders, oxidative stress, and neuroinflammation via inhibition of TLR4-NF-кB pathway. Phytother Res. 2024;38(7):3489-3508. [42] 杨树楷,瓦庆彪,袁晓燕.湿润烧伤膏干预烧伤模型大鼠创面愈合及α-平滑肌肌动蛋白的表达[J].中国组织工程研究,2022,26(23):3762-3767. [43] ZHANG K, WANG T, SUN GF, et al. Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion. Free Radic Biol Med. 2023;205:47-61. [44] CHEN X, LI X, ZHANG W, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Metabolism. 2018;83:256-270. [45] SUNDELIN E, JENSEN JB, JAKOBSEN S, et al. Metformin Biodistribution: A Key to Mechanisms of Action? J Clin Endocrinol Metab. 2020;105(11): dgaa332. [46] LEI DD, LIAO L, QIN T, et al. Reprogramming Lung Redox Homeostasis by NIR Driven Ultra-Small Pd Loaded Covalent Organic Framework Inhibits NF-κB Pathway for Acute Lung Injury Immunotherapy. Adv Sci. 2025;18:e2413697. [47] CAO X, DENG Y, XU Z, et al. A versatile natural gelatin-based hydrogel for emergency wound treatment through hemostasis, antibacterial, and anti-inflammation. Biofabrication. 2024;17(1). doi: 10.1088/1758-5090/ad89ff. |
[1] | Haonan Yang, Zhengwei Yuan, Junpeng Xu, Zhiqi Mao, Jianning Zhang. Preliminary study on the mechanisms and efficacy of deep brain stimulation in treating depression [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(在线): 1-9. |
[2] | Sun Lei, Zhang Qi, Zhang Yu. Pro-osteoblastic effect of chlorogenic acid protein microsphere/polycaprolactone electrospinning membrane [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1877-1884. |
[3] | Wu Yanting, Li Yu, Liao Jinfeng. Magnesium oxide nanoparticles regulate osteogenesis- and angiogenesis-related gene expressions to promote bone defect healing [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1885-1895. |
[4] | Li Qingbin, Lin Jianhui, Huang Wenjie, Wang Mingshuang, Du Jiankai, Lao Yongqiang. Bone cement filling after enlarged curettage of giant cell tumor around the knee joint: a comparison of subchondral bone grafting and non-grafting [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1896-1902. |
[5] | Jiang Xinghai, Song Yulin, Li Dejin, Shao Jianmin, Xu Junzhi, Liu Huakai, Wu Yingguo, Shen Yuehui, Feng Sicheng. Vascular endothelial growth factor 165 genes transfected into bone marrow mesenchymal stem cells to construct a vascularized amphiphilic peptide gel module [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1903-1911. |
[6] | Yang Xuetao, Zhu Menghan, Zhang Chenxi, Sun Yimin, Ye Ling. Applications and limitations of antioxidant nanomaterials in oral cavity [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 2044-2053. |
[7] | Gao Yanguo, Guo Xu, Li Xiaohan, Chen Shiqi, Zhu Haitao, Huang Liangyong, Ye Fang, Lu Wei, Wang Qibin, Zheng Tao, Chen Li. Optimization of prescription ratio of “Honghuangbai” gel by orthogonal test in diabetic skin wound mouse models [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1921-1928. |
[8] | Liu Hongjie, Mu Qiuju, Shen Yuxue, Liang Fei, Zhu Lili. Metal organic framework/carboxymethyl chitosan-oxidized sodium alginate/platelet-rich plasma hydrogel promotes healing of diabetic infected wounds [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1929-1939. |
[9] | Min Changqin, Huang Ying. Construction of pH/near-infrared laser stimuli-responsive drug delivery system and its application in treatment of oral squamous cell carcinoma [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1940-1951. |
[10] | Shao Ziyu, Li Qian, Qumanguli·Abudukelimu, Han Youjun, Hu Yang. Preparation and characterization properties of three different ratios of biphasic calcium phosphate [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1952-1961. |
[11] | Zheng Xuying, Hu Hongcheng, Xu Libing, Han Jianmin, Di Ping. Stress magnitude and distribution in two-piece cement-retained zirconia implants under different loading conditions and with varying internal connection shapes [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1979-1987. |
[12] | Zhou Hongli, Wang Xiaolong, Guo Rui, Yao Xuanxuan, Guo Ru, Zhou Xiongtao, He Xiangyi. Fabrication and characterization of nanohydroxyapatite/sodium alginate/polycaprolactone/alendronate scaffold [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1962-1970. |
[13] | Wang Qisa, Lu Yuzheng, Han Xiufeng, Zhao Wenling, Shi Haitao, Xu Zhe. Cytocompatibility of 3D printed methyl acrylated hyaluronic acid/decellularized skin hydrogel scaffolds [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1912-1920. |
[14] | Yang Lixia, Diao Liqin, Li Hua, Feng Yachan, Liu Xin, Yu Yuexin, Dou Xixi, Gu Huifeng, Xu Lanju. Regulatory mechanism of recombinant type III humanized collagen protein improving photoaging skin in rats [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1988-2000. |
[15] | Pan Zhiyi, Huang Jiawen, Xue Wenjun, Xu Jianda. Advantages of MXene-based flexible electronic sensors and their application in monitoring diabetic foot wounds [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 2023-2032. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||