Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (30): 6398-6408.doi: 10.12307/2025.766
Previous Articles Next Articles
Fan Jiaxin1, 2, Jia Xiang1, 2, Xu Tianjie1, 2, Liu Kainan3, Guo Xiaoling1, 2, Zhang Hui4, Wang Qian1, 2
Received:
2024-08-10
Accepted:
2024-09-29
Online:
2025-10-28
Published:
2025-03-27
Contact:
Wang Qian, MD, Master’s supervisor, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei Province, China; Key Laboratory of Basic Medicine for Chronic Diseases, Tangshan 063210, Hebei Province, China
About author:
Fan Jiaxin, Master candidate, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, Hebei Province, China; Key Laboratory of Basic Medicine for Chronic Diseases, Tangshan 063210, Hebei Province, China
Supported by:
CLC Number:
Fan Jiaxin, Jia Xiang, Xu Tianjie, Liu Kainan, Guo Xiaoling, Zhang Hui, Wang Qian . Metformin inhibits ferroptosis and improves cartilage damage in osteoarthritis model rats[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6398-6408.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 网络药理学结果 2.1.1 共同靶点预测 从CTD数据库中获得921个二甲双胍靶点,从SwissTarget数据库中收集了33个二甲双胍靶点,去除重复目标后,收集到949个二甲双胍靶点。从 GeneCards 数据库中总共获得 5 407 个骨关节炎相关靶点,从OMIM数据库中收集381个骨关节炎靶点,去除重复目标后,收集到5 624个骨关节炎靶点。从GeneCards数据库中总共获得1 467个铁死亡相关靶点,从OMIM数据库中收集54个铁死亡靶点,去除重复目标后,收集到1 505个铁死亡靶点。将3组靶点进行交叉,最终获得二甲双胍、骨关节炎和铁死亡的96个潜在共同靶点,见图1。 2.1.2 蛋白质-蛋白质相互作用网络分析 将获得的 96个二甲双胍、骨关节炎和铁死亡的潜在共同靶点转移至STRING平台进行蛋白质-蛋白质相互作用网络分析,并在 Cytoscape 3.9.1软件中进行可视化,最后构建了二甲双胍、骨关节炎和铁死亡的相互作用网络。节点的大小和颜色基于度值,而边缘厚度和颜色基于组合分数的大小,共有77个节点(代表77个潜在共同目标)和507条边(代表77个潜在共同目标之间的交互),见图2。 2.1.3 关键靶标 根据网络拓扑的中心性,数据包括度中心性、接近中心性和介数中心性。筛选条件是度值> 28,介数中心性> 0.005,接近中心性> 0.5。筛选出10个靶点,表明这 10个靶点可能是二甲双胍、骨关节炎和铁死亡的潜在关键靶点。按度值排名前10位是TP53、AKT1、JUN、白细胞介素6、MYC、白细胞介素1β、肿瘤坏死因子α、HIF1A、SIRT1、NFKB1,见表3。"
2.2 P53/SLC7A11与二甲双胍分子对接验证 使用软件Discovery Studio 2019进行分子对接模拟,以确定二甲双胍和P53/SLC7A11之间是否存在直接联系。对接分析结果显示,二甲双胍与P53/SLC7A11结合牢固稳定。可视化(使用pymol)显示:P53的活性氨基酸残基(ASN288和GLU349)直接与二甲双胍相互作用;在P53复合物的晶体结构中,二甲双胍与ASN288分别在0.33,0.39 nm处形成氢键相互作用,二甲双胍与GLU349在0.53 nm处形成盐桥作用,见图3。SLC7A11的活性氨基酸残基(ARG227、GLY229和TRY469)直接与二甲双胍相互作用;在Slc7a11复合物的晶体结构中,二甲双胍与ARG227、GLY229、TRY469分别在0.35,0.36,0.29,0.34 nm处形成氢键相互作用,见图4。 2.3 实验动物数量分析 30只SD大鼠全部进入结果分析。 2.4 各组大鼠膝关节软骨病理形态 苏木精-伊红染色结果:空白组大鼠软骨表面光滑,组织形态正常,软骨细胞单个排列;模型组大鼠软骨表面不规则,可见较明显缺损,软骨细胞呈簇状分布且数量减少;二甲双胍组软骨表面光滑,软骨细胞数量较多且排列整齐,见图5A。 番红O-固绿染色结果:空白组软骨细胞内可见蓝色细胞核,软骨基质番红染色均匀,呈红色,潮线完整;模型组软骨细胞数量减少,部分软骨组织染色不均匀,且潮线不完整;二甲双胍组软骨细胞数量较多,软骨组织染色较模型组染色均匀且深染,潮线完整,见图5B。 Mankin评分结果:模型组Mankin评分较空白组明显升高(P < 0.05),二甲双胍组Mankin评分较模型组明显降低(P < 0.05),见表4。"
2.5 各组大鼠血清中白细胞介素6、肿瘤坏死因子α相对含量 模型组大鼠血清中白细胞介素6、肿瘤坏死因子α相对含量明显高于空白组(P < 0.05);二甲双胍组大鼠血清中白细胞介素6、肿瘤坏死因子α相对含量低于模型组(P < 0.05),见图6。 2.6 各组大鼠膝关节软骨组织中基质金属蛋白酶13表达 正置荧光显微镜观察,各组软骨细胞均可见基质金属蛋白酶13阳性反应呈绿色荧光,细胞核DAPI染色后呈蓝色荧光。空白组绿色荧光较弱,模型组荧光较空白组明显增强,二甲双胍组荧光较模型组明显减弱,见图7A。通过免疫荧光染色平均荧光强度分析发现,与空白组相较,模型组基质金属蛋白酶13平均荧光强度明显升高(P < 0.05);二甲双胍组较模型组平均荧光强度明显下降(P < 0.05),见图7B。 Western blot检测结果显示,模型组基质金属蛋白酶13蛋白表达最高,二甲双胍组次之,空白组最低,见图8A。对蛋白条带灰度值分析发现,模型组基质金属蛋白酶13蛋白表达较空白组明显升高(P < 0.05),二甲双胍组较模型组明显下降但仍高于空白组,差异有显著性意义(P < 0.05),见图8B。 Real-time qPCR检测结果显示,模型组基质金属蛋白酶13 mRNA相对表达量较空白组明显升高(P < 0.05),二甲双胍组较模型组明显降低但仍高于空白组,差异有显著性意义(P < 0.05),见图8C。Real-time qPCR结果与免疫荧光染色、Western blot检测结果一致。 2.7 各组大鼠膝关节软骨组织中软骨蛋白聚糖表达 正置荧光显微镜观察,各组软骨细胞均可见软骨蛋白聚糖阳性反应呈绿色荧光,细胞核DAPI染色后呈蓝色荧光。空白组绿色荧光较强,模型组荧光较空白组明显减弱,二甲双胍组荧光较模型组增强,见图9A。通过免疫荧光染色平均荧光强度分析发现,与空白组比较,模型组软骨蛋白聚糖荧光强度明显下降(P < 0.05);二甲双胍组较模型组荧光强度明显升高(P < 0.05),见图9B。 Western blot检测结果显示,模型组软骨蛋白聚糖蛋白表达最低,二甲双胍组次之,空白组最高,见图10A。对蛋白条带灰度值分析发现,模型组软骨蛋白聚糖蛋白表达较空白组明显下降(P < 0.05),二甲双胍组较模型组明显升高但仍低于空白组(P < 0.05),见图10B。 Real-time qPCR检测结果显示,模型组软骨蛋白聚糖mRNA相对表达量较空白组明显下降(P < 0.05),二甲双胍组较模型组明显升高(P < 0.05),见图10C。Real-time qPCR结果与免疫荧光染色、Western blot检测结果一致。 2.8 各组大鼠血清中谷胱甘肽、丙二醛、Fe2+相对含量 与空白组比较,模型组血清中丙二醛、Fe2+相对含量明显升高,谷胱甘肽相对含量明显降低(P < 0.05);与模型组比较,二甲双胍组血清中丙二醛、Fe2+相对含量明显降低,谷胱甘肽相对含量明显升高(P < 0.05),见图11。 2.9 各组大鼠膝关节软骨组织中P53/SLC7A11/GPX4表达 正置荧光显微镜观察,各组软骨细胞均可见P53阳性反应呈绿色荧光,SLC7A11阳性反应呈红色荧光,细胞核DAPI染色后呈蓝色荧光。P53荧光染色可见,空白组绿色荧光较弱,模型组荧光较空白组明显增强,二甲双胍组荧光较模型组明显减弱。同时,SLC7A11荧光染色可见,空白组红色荧光较强,模型组荧光较空白组明显减弱,二甲双胍组荧光较模型组明显增强,见图12A。免疫荧光染色平均荧光强度分析发现,与空白组相较,模型组P53荧光强度明显升高(P < 0.05);二甲双胍组较模型组荧光强度明显下降(P < 0.05)。同时,与空白组相较,模型组SLC7A11荧光强度明显下降(P < 0.05);二甲双胍组较模型组荧光强度明显升高(P < 0.05),见图12B。 正置荧光显微镜观察,各组软骨细胞均可见SLC7A11阳性反应呈红色荧光,GPX4阳性反应呈绿色荧光,细胞核DAPI染色后呈蓝色荧光。SLC7A11、GPX4荧光染色可见,空白组红、绿色荧光均较强;模型组荧光较空白组均明显减弱;二甲双胍组荧光较模型组明显增强,见图13A。"
[1] TONG L, YU H, HUANG X, et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res. 2022;10(1):60. [2] HUNTER DJ, BIERMA-ZEINSTRA S. Osteoarthritis. Lancet. 2019;393(10182):1745-1759. [3] WANG H, SU J, YU M, et al. PGC-1α in osteoarthritic chondrocytes: From mechanism to target of action. Front Pharmacol. 2023;14:1169019. [4] KUSWANTO W, BAKER MC. Repurposing drugs for the treatment of osteoarthritis. Osteoarthritis Cartilage. 2024;32(8):886-895. [5] ARODA VR, KNOWLER WC, CRANDALL JP, et al. Metformin for diabetes prevention: insights gained from the Diabetes Prevention Program/Diabetes Prevention Program Outcomes Study. Diabetologia. 2017;60(9):1601-1611. [6] WANG C, YANG Y, ZHANG Y, et al. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci Trends. 2019;12(6):605-612. [7] TERKELTAUB R, YANG B, LOTZ M, et al. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. Arthritis Rheum. 2011;63(7):1928-1937. [8] YAO X, SUN K, YU S, et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat. 2020;27:33-43. [9] XIE Y, HOU W, SONG X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369-379. [10] ZOU Z, HU W, KANG F, et al. Interplay between lipid dysregulation and ferroptosis in chondrocytes and the targeted therapy effect of metformin on osteoarthritis. J Adv Res. 2024. doi: 10.1016/j.jare.2024.04.012. [11] YI Y, ZHANG W, YI J, et al. Role of p53 Family Proteins in Metformin Anti-Cancer Activities. J Cancer. 2019;10(11):2434-2442. [12] LIU Y, GU W. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ. 2022;29(5):895-910. [13] JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57-62. [14] KANG R, KROEMER G, TANG D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 2019;133:162-168. [15] YAN J, FENG G, MA L, et al. Metformin alleviates osteoarthritis in mice by inhibiting chondrocyte ferroptosis and improving subchondral osteosclerosis and angiogenesis. J Orthop Surg Res. 2022;17(1):333. [16] LI J, ZHANG B, LIU WX, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann Rheum Dis. 2020;79(5):635-645. [17] 罗臻,李宏栩,卢启贵,等.红姜提取物保护早期膝骨关节炎模型大鼠的关节软骨[J].中国组织工程研究,2021,25(32):5155-5161. [18] 徐田杰,樊佳欣,郭小玲,等.二甲双胍抑制PI3K/AKT/mTOR信号通路保护骨关节炎模型大鼠关节软骨[J].中国组织工程研究,2025,29(5):1003-1012. [19] GEZER HH, OSTOR A. What is new in pharmacological treatment for osteoarthritis? Best Pract Res Clin Rheumatol. 2023;37(2):101841. [20] PERRUCCIO AV, YOUNG JJ, WILFONG JM, et al. Osteoarthritis year in review 2023: Epidemiology & therapy. Osteoarthritis Cartilage. 2024;32(2):159-165. [21] FLORY J, LIPSKA K. Metformin in 2019. JAMA. 2019;321(19):1926-1927. [22] TRIGGLE CR, MOHAMMED I, BSHESH K, et al. Metformin: Is it a drug for all reasons and diseases? Metabolism. 2022;133:155223. [23] LV Z, GUO Y. Metformin and Its Benefits for Various Diseases. Front Endocrinol (Lausanne). 2020;11:191. [24] LI D, RUAN G, ZHANG Y, et al. Metformin attenuates osteoarthritis by targeting chondrocytes, synovial macrophages and adipocytes. Rheumatology (Oxford). 2023;62(4):1652-1661. [25] NA HS, KWON JY, LEE SY, et al. Metformin Attenuates Monosodium-Iodoacetate-Induced Osteoarthritis via Regulation of Pain Mediators and the Autophagy-Lysosomal Pathway. Cells. 2021;10(3):681. [26] LAI FTT, YIP BHK, HUNTER DJ, et al. Metformin use and the risk of total knee replacement among diabetic patients: a propensity-score-matched retrospective cohort study. Sci Rep. 2022;12(1):11571. [27] FENG X, PAN J, LI J, et al. Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR. Aging (Albany NY). 2020;12(2):1087-1103. [28] FUJII Y, LIU L, YAGASAKI L, et al. Cartilage Homeostasis and Osteoarthritis. Int J Mol Sci. 2022;23(11):6316. [29] GAO Y, LIU S, HUANG J, et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int. 2014;2014:648459. [30] HOLLANDER AP, DICKINSON SC, KAFIENAH W. Stem cells and cartilage development: complexities of a simple tissue. Stem Cells. 2010;28(11):1992-1996. [31] KAPOOR M, MARTEL-PELLETIER J, LAJEUNESSE D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011; 7(1):33-42. [32] ZHENG W, ZHOU T, ZHANG Y, et al. Simplified α2-macroglobulin as a TNF-α inhibitor for inflammation alleviation in osteoarthritis and myocardial infarction therapy. Biomaterials. 2023;301:122247. [33] YU Y, KIM SM, PARK K, et al. Therapeutic Nanodiamonds Containing Icariin Ameliorate the Progression of Osteoarthritis in Rats. Int J Mol Sci. 2023;24(21):15977. [34] RAPP AE, ZAUCKE F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am J Physiol Cell Physiol. 2023;324(2):C377-C394. [35] ROUGHLEY PJ, MORT JS. The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop. 2014;1(1):8. [36] HU Q, ECKER M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int J Mol Sci. 2021;22(4):1742. [37] JIANG X, STOCKWELL BR, CONRAD M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266-282. [38] LIU MR, ZHU WT, PEI DS. System Xc-: a key regulatory target of ferroptosis in cancer. Invest New Drugs. 2021;39(4):1123-1131. [39] WU X, LI Y, ZHANG S, et al. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 2021;11(7):3052-3059. [40] LIU J, KANG R, TANG D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022;289(22):7038-7050. [41] LIANG D, MINIKES AM, JIANG X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;82(12):2215-2227. [42] WANG S, LI W, ZHANG P, et al. Mechanical overloading induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis via Piezo1 channel facilitated calcium influx. J Adv Res. 2022;41:63-75. [43] MIAO Y, CHEN Y, XUE F, et al. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine. 2022;76:103847. [44] ZHANG X, HOU L, GUO Z, et al. Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov. 2023;9(1):320. [45] XU R, WANG W, ZHANG W. Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov. 2023;9(1):197. [46] KOPPULA P, ZHUANG L, GAN B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599-620. [47] GONG Z, WANG Y, LI L, et al. Cardamonin alleviates chondrocytes inflammation and cartilage degradation of osteoarthritis by inhibiting ferroptosis via p53 pathway. Food Chem Toxicol. 2023;174:113644. [48] FAN Z, WIRTH AK, CHEN D, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 2017;6(8):e371. [49] INGOLD I, BERNDT C, SCHMITT S, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172(3):409-422.e21. [50] LIM JKM, DELAIDELLI A, MINAKER SW, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A. 2019;116(19):9433-9442. [51] XIAO J, LUO C, LI A, et al. Icariin inhibits chondrocyte ferroptosis and alleviates osteoarthritis by enhancing the SLC7A11/GPX4 signaling. Int Immunopharmacol. 2024;133:112010. [52] ZENG C, LIN J, ZHANG K, et al. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci. 2022;113(11):3766-3775. |
[1] | Yin Lu, Jiang Chuanfeng, Chen Junjie, Yi Ming, Wang Zihe, Shi Houyin, Wang Guoyou, Shen Huarui. Effect of Complanatoside A on the apoptosis of articular chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1541-1547. |
[2] | Zhao Nannan, Li Yanjie, Qin Hewei, Zhu Bochao, Ding Huimin, Xu Zhenhua. Changes in ferroptosis in hippocampal neurons of vascular dementia model rats treated with Tongmai Kaiqiao Pill [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1401-1407. |
[3] | Zhang Mingyang, Yang Xinling. Verbascoside inhibits Erastin-induced ferroptosis of dopaminergic nerve cell line MN9D cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1408-1413. |
[4] | Wang Mi, Ma Shujie, Liu Yang, Qi Rui. Identification and validation of characterized gene NFE2L2 for ferroptosis in ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1466-1474. |
[5] | Gao Yang, Qin Hewei, Liu Dandan. ACSL4 mediates ferroptosis and its potential role in atherosclerotic cardiovascular disease [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1239-1247. |
[6] | Lan Shuangli, Xiang Feifan, Deng Guanghui, Xiao Yukun, Yang Yunkang, Liang Jie. Naringin inhibits iron deposition and cell apoptosis in bone tissue of osteoporotic rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 888-898. |
[7] | Xu Tianjie, Fan Jiaxin, Guo Xiaoling, Jia Xiang, Zhao Xingwang, Liu kainan, Wang Qian. Metformin exerts a protective effect on articular cartilage in osteoarthritis rats by inhibiting the PI3K/AKT/mTOR pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1003-1012. |
[8] | Wu Guangtao, Qin Gang, He Kaiyi, Fan Yidong, Li Weicai, Zhu Baogang, Cao Ying . Causal relationship between immune cells and knee osteoarthritis: a two-sample bi-directional Mendelian randomization analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 1081-1090. |
[9] | Sima Xinli, Liu Danping, Qi Hui. Effect and mechanism of metformin-modified bone marrow mesenchymal stem cell exosomes on regulating chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7728-7734. |
[10] | Li Tingyue, Guo Qian, He Wenxi, Wu Jiayuan. Long noncoding RNA TP53TG1 promotes odontogenic and osteogenic differentiation of stem cells from the apical papilla [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7776-7782. |
[11] | Ma Weibang, Xu Zhe, Yu Qiao, Ouyang Dong, Zhang Ruguo, Luo Wei, Xie Yangjiang, Liu Chen. Screening and cytological validation of cartilage degeneration-related genes in exosomes from osteoarthritis synovial fluid [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7783-7789. |
[12] | Wang Chen, Zhang Weinan, Shen Jining, Liu Fan, Yuan Jishan, Liu Yake. Inhibitory effect of ferroptosis inhibitor toxicity induced by cobalt nanoparticles through reactive oxygen species [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7310-7317. |
[13] | Pan Yu, Zhao Renfeng, Li Xingping, Zhang Chengdong, Shi Feng, Pu Chao, Luo Xuwei, Xiao Dongqin. Iron overload induces ferroptosis in osteoblast precursor cells and inhibits osteogenic differentiation [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6381-6390. |
[14] | Yu Qinghe, Cai Ziming, Wu Jintao, Ma Pengfei, Zhang Xin, Zhou Longqian, Wang Yakun, Lin Xiaoqin, Lin Wenping. Vanillic acid inhibits inflammatory response and extracellular matrix degradation of endplate chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6391-9397. |
[15] | Zhou Ying, Tian Yong, Zhong Zhimei, Gu Yongxiang, Fang Hao. Inhibition of tumor necrosis factor receptor associated factor 6 regulates mTORC1/ULK1 signaling and promotes autophagy to improve myocardial injury in sepsis mice [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6434-6440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||