Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (11): 2402-2410.doi: 10.12307/2025.332
Previous Articles Next Articles
Huang Keqi, Chen Yueping, Chen Shangtong, Li Jiagen
Received:
2024-03-14
Accepted:
2024-05-06
Online:
2025-04-18
Published:
2024-08-13
Contact:
Chen Yueping, PhD, Chief physician, Doctoral supervisor, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China
About author:
Huang Keqi, Master candidate, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China
Supported by:
CLC Number:
Huang Keqi, Chen Yueping, Chen Shangtong, Li Jiagen. Machine learning identification of mitochondrial autophagy diagnostic biomarkers and immune infiltration analysis in steroid-induced osteonecrosis of the femoral head[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(11): 2402-2410.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 激素性股骨头坏死差异基因 使用“limma”包分析激素性股骨头坏死组和对照组的RNA-seq数据,设计校正后P < 0.05和|log2FC|使用> 0.58,总共筛选出1 163个差异基因,其中有663个上调基因和500个下调基因(图1A)。然后用火山图和热图可视化,火山图中显示上调的基因标注为橙点,下调的基因标注为蓝点。将排行前20个和后20个差异基因通过热图展示(图1B)。 2.2 WGCNA结果 WGCNA是发现基因与临床表型的好方法,通过结合差异表达基因挖掘出与临床疾病表型相关的关键基因。GSE123568没有异常值,数据集中未删除任何样本,对本数据集中位绝对偏差的前75%基因进行了WGCNA筛选,当软阈值功率=12时,评估参数R2大于0.5,构建了β=12软阈值能力的无标度网络(图2A),并根据表达谱将基因分类为不同的模块。通过平均链接聚类(图2B),模块的颜色越深,提示该模块相关性越强。在分析了正相关系数后选择了相关系数最强的模块,结果显示black模块(r=±0.52,P=6×10-4)、blue模块(r=±0.67,P=3×10-6)、brown模块(r=±0.67,P=4×10-6)和slmon模块(r=±0.7,P=4×10-7)的基因具有显著意义,其余无显著的模块(图2C)。最后,分别提取了上述4个模块中的基因,包括black模块43个基因、blue模块837个基因、brown模块335个基因和slmon模块中的197个基因,这1 412个基因被认为是与临床表型相关的关键基因。 2.3 整理激素性股骨头坏死的线粒体相关基因及GO、KEGG功能分析 从“MitoCarta 3.0”数据库中收集和整理线粒体相关基因,共有1 136个基因,使用1 163个差异基因、WGCNA相关模块的1 412个基因和线粒体相关1 136个基因取交集得到激素性股骨头坏死线粒体相关基因,一共得到39个线粒体相关激素性股骨头坏死基因(图1C)。进行GO和KEGG功能富集分析(图3),GO富集分析结果显示,生物过程主要涉及血红素代谢过程、线粒体运输、核苷酸双磷酸的代谢过程和硫酯代谢过程,细胞组分主要涉及线粒体基质、线粒体外膜、细胞器外膜和线粒体内膜,分子功能主要涉及脂肪酸连接酶活性、铁-硫簇结合和辅酶A连接酶活性,将每项功能的前5项分析结果可视化;KEGG富集分析结果显示共映射出6条通路,主要涉及脂肪酸降解、线粒体自噬、丁酸代谢、脂肪酸生物合成和辅因子生物合成。 2.4 两种机器学习筛选诊断标志物 利用R软件的“random Forest”包对39个差异基因进行随机森林算法,并绘制分组误差图和基因重要性图谱,共筛出16个基因,以重要性分数0.5为基准共筛出9个特征基因(图4A,B)。利用LASSO模型进行内部验证,共获得5个特征基因(图4C)。将2种机器学习的结果取交集得到4个诊断标志物(图4D),分别是ALDH5A1、FBL4、MCL1和STOM。 2.5 风险模型构建与验证 将上述结果中的4个线粒体基因纳入风险研究,并基于二分类逻辑回归分析,构建列线图模型,以计算总评分来分析激素性股骨头坏死患者的风险概率(图5)。结果显示,线粒体4个基因的受试者工作特征曲线结果显示曲"
线下面积值均> 0.9(图6),说明线粒体4个基因对激素性股骨头坏死具有良好的诊断价值。列线图的受试者工作特征曲线结果显示曲线下面积为0.98,说明列线图模型对股骨头坏死患者风险因素的评估具有较好的预测能力(图6A)。 2.6 免疫浸润分析 通过CIBERSORT反卷积算法以P < 0.05样本进行筛选。热图左侧10个样本(GSM3507251-GSM3507260)为对照组,右侧30个样本(GSM3507261-GSM3507290)为激素性股骨头坏死组,免疫细胞比例箱图中展示了22种免疫细胞的浸润比例(图7)。创建了一个热图来描述免疫细胞之间的差异相关模式(图8A),红色越深代表二者正相关性越高,蓝色越深代表二者负相关性越高,高正相关性的组合有活化的CD8T细胞与效应记忆CD8T细胞、骨髓来源的抑制性细胞与中心记忆CD4T细胞,其中发现活化的树突状细胞与T滤泡辅助细胞、嗜酸性粒细胞、中性粒细胞、浆细胞样树突状细胞和自然杀伤细胞等免疫细胞均具有高正相关性。负相关性较高的组合自然杀伤细胞与未成熟树突状细胞、2型T辅助细胞与巨噬细胞,其中发现活化的CD4T细胞与多种免疫细胞均呈高负相关,包括活化的树突状细胞、骨髓来源的抑制性细胞、调节性T细胞和中心记忆CD8T细胞等免疫细胞。 免疫浸润热图结果显示,激素性股骨头坏死样本的免疫浸润丰度远高于对照组,其中包括中心记忆CD4T细胞、活化的CD4T细胞、骨髓来源的抑制性细胞和T滤泡辅助细胞等多数免疫浸润细胞(图8B)。免疫差异细胞箱向图结果显示,免疫细胞表达在激素性股骨头坏死和对照组有显著差异,中心记忆CD4T细胞、效应记忆CD8T细胞、骨髓来源的抑制性细胞和记忆B细胞在激素性股骨头坏死组中的表达显著高于对照组。在诊断标志物与免疫细胞相关性热图中,MCL1与骨髓来源的抑制性细胞、中性粒细胞、效应记忆CD8T细胞、T滤泡辅助细胞和活化的树突状细胞呈正相关,而ALDH5A1、FBXL4和STOM与上述免疫细胞呈负相关(图8C,D)。"
[1] TAKASHIMA K, IWASA M, ANDO W, et al. MRI screening for osteonecrosis of the femoral head after COVID-19. Mod Rheumatol. 2023:road095. doi: 10.1093/mr/road095. [2] IM GI. Regenerative medicine for osteonecrosis of the femoral head : present and future. Bone Joint Res. 2023;12(1):5-8. [3] WEINSTEIN RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365(1):62-70. [4] KURODA T, TANABE N, WAKAMATSU A, et al. High triglyceride is a risk factor for silent osteonecrosis of the femoral head in systemic lupus erythematosus. Clin Rheumatol. 2015;34(12):2071-2077. [5] HOUDEK MT, WYLES CC, PACKARD BD, et al. Decreased Osteogenic Activity of Mesenchymal Stem Cells in Patients With Corticosteroid-Induced Osteonecrosis of the Femoral Head. J Arthroplasty. 2016; 31(4):893-898. [6] ZHANG Q, SUN W, LI T, et al. Polarization Behavior of Bone Macrophage as Well as Associated Osteoimmunity in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. J Inflamm Res. 2023;16: 879-894. [7] CHENG Y, CHEN H, DUAN P, et al. Early depletion of M1 macrophages retards the progression of glucocorticoid-associated osteonecrosis of the femoral head. Int Immunopharmacol. 2023;122:110639. [8] OSAWA Y, TAKEGAMI Y, KATO D, et al. Hip function in patients undergoing conservative treatment for osteonecrosis of the femoral head. Int Orthop. 2023;47(1):89-94. [9] JENKINS BC, NEIKIRK K, KATTI P, et al. Mitochondria in disease: changes in shapes and dynamics. Trends Biochem Sci. 2024; 49(4):346-360. [10] HARRINGTON JS, RYTER SW, PLATAKI M, et al. Mitochondria in health, disease, and aging. Physiol Rev. 2023;103(4):2349-2422. [11] VICTORELLI S, SALMONOWICZ H, CHAPMAN J, et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature. 2023;622(7983):627-636. [12] TENG Y. Remodeling of Mitochondria in Cancer and Other Diseases. Int J Mol Sci. 2023;24(9):7693. [13] VAFAI SB, MOOTHA VK. Mitochondrial disorders as windows into an ancient organelle. Nature. 2012;491(7424):374-383. [14] DANG R, HOU X, HUANG X, et al. Effects of the Glucocorticoid-Mediated Mitochondrial Translocation of Glucocorticoid Receptors on Oxidative Stress and Pyroptosis in BV-2 Microglia. J Mol Neurosci. 2024;74(1):30. [15] DU F, YU Q, SWERDLOW RH, et al. Glucocorticoid-driven mitochondrial damage stimulates Tau pathology. Brain. 2023;146(10):4378-4394. [16] RATH S, SHARMA R, GUPTA R, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49(D1): D1541-D1547. [17] BARDOU P, MARIETTE J, ESCUDIE F, et al. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15(1):293. [18] TSUBOSAKA M, MARUYAMA M, LUI E, et al. Preclinical models for studying corticosteroid-induced osteonecrosis of the femoral head[. J Biomed Mater Res B Appl Biomater. 2024;112(1):e35360. [19] TANG B, CHEN Y, ZHAO P, et al. MiR-601-induced BMSCs senescence accelerates steroid-induced osteonecrosis of the femoral head progression by targeting SIRT1. Cell Mol Life Sci. 2023;80(9):261. [20] JIANG LY, YU X, PANG QJ. Research in the precaution of recombinant human erythropoietin to steroid-induced osteonecrosis of the rat femoral head. J Int Med Res. 2017;45(4):1324-1331. [21] ANASTASILAKI E, PACCOU J, GKASTARIS K, et al. Glucocorticoid-induced osteoporosis: an overview with focus on its prevention and management. Hormones (Athens). 2023;22(4):611-622. [22] ZHANG Y, WENG J, HUAN L, et al. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol. 2023;14:1165507. [23] CASTRO-SEPULVEDA M, FERNANDEZ-VERDEJO R, ZBINDEN-FONCEA H, et al. Mitochondria-SR interaction and mitochondrial fusion/fission in the regulation of skeletal muscle metabolism. Metabolism. 2023;144:155578. [24] SU E, VILLARD C, MANNEVILLE JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell.2023;115(9):e2300010. [25] LU Y, LI Z, ZHANG S, et al. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13(2):736-766. [26] WANG S, LONG H, HOU L, et al. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 2023;8(1):304. [27] YANG N, SUN H, XUE Y, et al. Inhibition of MAGL activates the Keap1/Nrf2 pathway to attenuate glucocorticoid-induced osteonecrosis of the femoral head. Clin Transl Med. 2021;11(6):e447. [28] ZHANG F, PENG W, ZHANG J, et al. P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head. Cell Death Dis. 2020;11(1):42. [29] TIAN Z, CHEN Y, YAO N, et al. Role of mitophagy regulation by ROS in hepatic stellate cells during acute liver failure. Am J Physiol Gastrointest Liver Physiol. 2018;315(3):G374-G384. [30] KOROLCHUK VI, MIWA S, CARROLL B, et al. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine. 2017;21:7-13. [31] LIU J, HAN X, QU L, et al. Identification of key ferroptosis-related biomarkers in steroid-induced osteonecrosis of the femoral head based on machine learning. J Orthop Surg Res. 2023;18(1):327. [32] LIANG XZ, LUO D, CHEN YR, et al. Identification of potential autophagy-related genes in steroid-induced osteonecrosis of the femoral head via bioinformatics analysis and experimental verification. J Orthop Surg Res. 2022;17(1):86. [33] LENTING K, KHURSHED M, PEETERS TH, et al. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress. FASEB J. 2019;33(1):557-571. [34] DENG XY, GAN XX, FENG JH, et al. ALDH5A1 acts as a tumour promoter and has a prognostic impact in papillary thyroid carcinoma. Cell Biochem Funct. 2021;39(2):317-325. [35] BRENNENSTUHL H, DIDIASOVA M, ASSMANN B, et al. Succinic Semialdehyde Dehydrogenase Deficiency: In Vitro and In Silico Characterization of a Novel Pathogenic Missense Variant and Analysis of the Mutational Spectrum of ALDH5A1. Int J Mol Sci. 2020;21(22):8578. [36] ZHENG Z, HAN L, LI Y, et al. Phospholipase A2-activating protein induces mitophagy through anti-apoptotic MCL1-mediated NLRX1 oligomerization. Biochim Biophys Acta Mol Cell Res. 2023;1870(6):119487. [37] WIDDEN H, PLACZEK WJ. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun Biol. 2021;4(1):1029. [38] HOLLVILLE E, CARROLL RG, CULLEN SP, et al. Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell. 2014;55(3):451-466. [39] FELTON JM, DORWARD DA, CARTWRIGHT JA, et al. Mcl-1 protects eosinophils from apoptosis and exacerbates allergic airway inflammation. Thorax. 2020;75(7):600-605. [40] JAMIL S, MOJTABAVI S, HOJABRPOUR P, et al. An essential role for MCL-1 in ATR-mediated CHK1 phosphorylation. Mol Biol Cell. 2008;19(8):3212-3220. [41] HAKKI SS, BATOON L, KOH AJ, et al. The effects of preosteoblast-derived exosomes on macrophages and bone in mice. J Cell Mol Med. 2024;28(1):e18029. [42] KIKYO N. Circadian Regulation of Macrophages and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci. 2023; 24(15):12307. [43] SCHINDELER A, MCDONALD MM, BOKKO P, et al. Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol. 2008;19(5):459-466. [44] WU L, LUO Z, LIU Y, et al. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-kappaB and NFATc1 activation. Stem Cell Res Ther. 2019;10(1):375. |
[1] | Li Jiagen, Chen Yueping, Huang Keqi, Chen Shangtong, Huang Chuanhong. The construction and validation of a prediction model based on multiple machine learning algorithms and the immunomodulatory analysis of rheumatoid arthritis from the perspective of mitophagy [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(在线): 1-15. |
[2] | Yang Dingyan, Yu Zhenqiu, Yang Zhongyu. Machine learning-based analysis of neutrophil-associated potential biomarkers for acute myocardial infarction [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7909-7920. |
[3] | Su Qin, Jia Siwei, Guo Minfang, Meng Tao, Li Yanbing, Mu Bingtao, Song Lijuan, Ma Cungen, Yu Jiezhong. Lycium barbarum polysaccharide intervenes in SH-SY5Y cell injury induced by beta-amyloid protein 1-42: protective effect of mitochondrial autophagy [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6688-6696. |
[4] | Xie Yizi, Lin Xueying, Zhang Xinxin, Huang Xiufang, Zhan Shaofeng, Jiang Yong, Cai Yan. Biological mechanism of mitophagy in idiopathic pulmonary fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6708-6716. |
[5] | Li Jiagen, Chen Yueping, Huang Keqi, Chen Shangtong, Huang Chuanhong. Rheumatoid arthritis from the perspective of mitophagy: interaction analysis based on multiple machine learning algorithms [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(26): 5595-5607. |
[6] | Guo Minfang, Zhang Huiyu, Zhang Peijun, Su Qin, Jia Siwei, Yu Jiezhong. Fasudil alleviates beta-amyloid 1-42-induced apoptosis of SH-SY5Y cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(23): 4939-4946. |
[7] | Wu Xiuli, Yan Xiaoxia, Ren Zhiqiang, Sun Nan, Li Jinju. Modeling methods and evaluation criteria in animal models of steroid-induced osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(21): 4560-4567. |
[8] | Liu Dandan, Qin Hewei. Mechanism of action and progress of mitophagy, ferroptosis, cuproptosis, and disulfidptosis in Alzheimer’s disease [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(19): 4132-4144. |
[9] | Zheng Yongzhi, Chen Feifei, Kang Qian, Jin Chunyang, Wang Ruoqin. Juanbi Decoction-containing serum inhibits interleukin-1beta induced articular chondrocyte damage via regulating mitophagy [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(14): 2882-2891. |
[10] | Song Mingxiao, Chen Junshunzi, Wang Ningwei, Cai Huan, Feng Hong. Role of prohibitin 2 in mitophagy pathway against atherosclerosis in rats undergoing endurance training [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(11): 2294-2300. |
[11] | Pan Shihong, Liu Ruiduan. Mitophagy and intervertebral disc degeneration [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(36): 5872-5876. |
[12] | Lan Yao, Chen Liuyang, Song Wenhui. Key biomarkers for the diagnosis of intervertebral disc degeneration associated with oxidative stress: identification based on bioinformatics and machine learning [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(35): 5591-5597. |
[13] | Tang Liang, Wang Hexia, Wang Qingbo, Pi Yihua, Zhang Yan. Aerobic exercise modulates mitochondrial quality control system to reverse cardiac pathological remodeling in aging rats [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(16): 2534-2541. |
[14] | Ding Yiqun, Li Xigong, Pan Wenming, Zhang Qin. Role and advance of mitophagy in spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(35): 5727-5733. |
[15] |
Yu Liang, Zhao Zeming, Zhao Binting, Li Lin, Liu Ziming, Wang Zhen, Wang Ruiyuan.
Effects of different intensities of exercises on BNIP3-mediated mitophagy
in skeletal muscle |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||