Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (36): 5741-5746.doi: 10.12307/2024.679
Shang Peng1, Cui Lunxu1, Ma Benyuan1, Hou Guanghui1, Song Wanzhen1, Liu Yancheng2
Received:
2023-08-21
Accepted:
2023-11-01
Online:
2024-12-28
Published:
2024-02-27
Contact:
Liu Yancheng, MD, Associate chief physician, Department of Orthopedics, Tianjin Hospital, Tianjin 300211, China
About author:
Shang Peng, MD, Associate professor, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
Supported by:
CLC Number:
Shang Peng, Cui Lunxu, Ma Benyuan, Hou Guanghui, Song Wanzhen, Liu Yancheng. Effect of restored height on neighboring vertebrae after vertebral body strengthening: a finite element analysis[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(36): 5741-5746.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 正常胸腰椎有限元模型的验证 为了验证此次研究所建立有限元模型的有效性,使用正常的胸腰椎(T11-L3)有限元模型和材料属性,并模拟正常人体在前屈、后伸、左右侧弯和左右旋转这6个工况下的运动。同时,将胸腰椎(T11-L3)模型中的L3椎节下表面施加固定约束,并在T11椎节上表面分别施加5 Nm力矩和300 N力加5 Nm力矩,以模拟没有预载荷和有预载荷下的前屈和后伸工况;侧弯和旋转工况通过施加5 Nm力矩来模拟相应的动作。为了对比分析,将活动度仿真结果与现有的尸体实验结果进行对比[30]。 仿真结果和尸体实验结果如图3所示。因为有限元模型的骨骼形貌和力学参数与正常人体骨骼存在差异,并且不同人体胸腰椎也存在一定的差别,因此对于尸体实验结果和有限元分析得出的结果必然会存在差别。但这些差异并没有超出研究所关注的范围,即有限元模型活动度基本落在误差棒内,且5 Nm力矩时活动度变化趋势相同。并且,此次研究主要观察同一工况下的峰值应力变化。因而,此模型基本符合此次研究的需要。"
对比发现,在L2上终板方面,随着恢复高度降低,前屈工况下的峰值应力呈上升趋势。然而,后伸工况在Model 3时达到峰值应力最低点,显示出先下降后上升的趋势。剩余4个工况的变化趋势相似,在Model 2的位置达到最低点。具体数值方面,前屈工况下的最小峰值应力为11.7 MPa(出现在Model 1),后伸工况下的最小峰值应力为12.4 MPa(出现在Model 3),左右侧弯和左右旋转工况下的最小峰值应力分别为21.6,22.5,13.4,13.1 MPa(均出现在Model 2),而后伸工况下的最大峰值应力为35.4 MPa(出现在Model 1),前屈、左右侧弯和左右旋转工况下的最大峰值应力分别为38.2,32.0,33.5,28.6,28.8 MPa(均出现在Model 4)。 而在T12下终板方面,峰值应力的变化情况与L2上终板不尽相同。前屈和左右旋转工况呈上升趋势,后伸工况与L2上终板相似,左右侧弯工况在Model 1至Model 3变化较平缓,波动有限。具体数值方面,后伸、左侧弯工况下的最小峰值应力分别为13.1,22.1 MPa(均出现在Model 3),前屈、右侧弯、左右旋转工况下的最小峰值应力分别为17.2,30.7,15.5,16.6 MPa(均出现在Model 1)。除了后伸工况外,前屈、左右侧弯和左右旋转工况下的最大峰值应力分别为50.3,33.1,44.9,34.3,31.9 MPa(均出现在Model 4)。 2.3 邻近椎体松质骨应力 根据不同加载方向下的4个术后模型在L2松质骨和T12松质骨上的峰值应力变化(如图6,7所示),可以得出以下结论:"
通过对比发现,L2松质骨上各工况随恢复高度的降低,峰值应力的变化趋势和L2上终板的峰值应力变化趋势是相似的。前屈工况呈上升趋势,左右侧弯和左右旋转工况的峰值应力变化为先下降后上升,而后伸工况呈下降趋势。具体数值方面,前屈工况下的最小峰值应力为0.374 MPa(出现在Model 1),后伸工况下的最小峰值应力为0.438 MPa(出现在Model 4),左右侧弯和左右旋转工况下的最小峰值应力分别为0.617,0.744,0.398,0.407 MPa(均出现在Model 2)。前屈工况下的最大峰值应力为0.818 MPa(出现在Model 4),后伸、左右侧弯和左右旋转工况下的最大峰值应力分别为1.05,0.902,0.947,0.655,0.658 MPa(均出现在Model 1)。 在T12松质骨方面,峰值应力变化趋势除左右侧弯外与L2上终板的峰值应力变化趋势相似。前屈工况呈上升趋势,后伸工况仍然表现为先下降后上升,最低点出现在Model 3。左右侧弯工况在4个模型中的变化幅度相对较小。左右旋转工况仍然呈现出与其他工况相似的趋势,即先下降后上升。具体数值方面,前屈工况下的最小峰值应力为0.557 MPa(出现在Model 1),后伸和左右侧弯工况下的最小峰值应力分别为0.409,0.773,0.823 MPa(均出现在Model 3),左右旋转工况下的最小峰值应力分别为0.428 3,0.428 1 MPa(均出现在Model 2)。前屈、左右旋转工况下的最大峰值应力分别为0.942,0.719,0.713 MPa(均出现在Model 4),后伸、左右侧弯工况下的最大峰值应力分别为0.911,0.791,0.885 MPa (均出现在Model 1)。"
[1] 张庆富, 武京国, 张敏,等.经皮椎体后凸成形术后邻近椎体再骨折的病理机制研究[J]. 山东第一医科大学(山东省医学科学院)学报,2021,42(11):811-815. [2] KLAZEN CAH, LOHLE PNM, DE VRIES J, et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet. 2010;376(9746):1085-1092. [3] 中华医学会骨质疏松和骨矿盐疾病分会, 章振林.原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学,2023,26(14):1671-1691. [4] ZHANG C, TAN Z. The relationships between population factors and China’s carbon emissions: Does population aging matter? Renew Sustain Energy Rev. 2016;65:1018-1025. [5] SUN H, LI C. Comparison of unilateral and bilateral percutaneous vertebroplasty for osteoporotic vertebral compression fractures: a systematic review and meta-analysis. J Orthop Surg Res. 2016;11(1):156. [6] JOHNELL O, KANIS JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726-1733. [7] PRATHER H, HUNT D, WATSON JO, et al. Conservative Care for Patients with Osteoporotic Vertebral Compression Fractures. Phys Med Rehabil Clin N Am. 2007;18(3):577-591, xi. [8] BUCHBINDER R, JOHNSTON R V, RISCHIN K J, et al. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst Rev. 2018;4(4): CD006349. [9] TSOUMAKIDOU G, TOO CW, KOCH G, et al. CIRSE Guidelines on Percutaneous Vertebral Augmentation. Cardiovasc Intervent Radiol. 2017;40(3):331-342. [10] ZHU S, SU Q, ZHANG Y, et al. Risk factors of cemented vertebral refracture after percutaneous vertebral augmentation: a systematic review and meta-analysis. Neuroradiology. 2020;62(11):1353-1360. [11] JACOBSON RE, PALEA O, GRANVILLE M. Progression of Vertebral Compression Fractures After Previous Vertebral Augmentation: Technical Reasons for Recurrent Fractures in a Previously Treated Vertebra. Cureus.2017;9(10):e1776. [12] 陈国能, 陈扬, 陈显辉, 等. PKP术后伤椎恢复高度与邻近椎体应力关系的有限元分析 [J]. 中国骨与关节损伤杂志,2019,34(11):1165-1167. [13] 冯杰荣, 殷海东, 陈伟, 等.T12椎体前缘不同压缩状态下相邻椎体终板应力的有限元分析[J]. 中国组织工程研究,2016,20(22):3263-3271. [14] 赵文韬, 秦大平, 张晓刚, 等.骨质疏松性椎体压缩骨折椎体强化术后不同椎体高度对相邻椎体应力影响的有限元分析[J]. 中国骨质疏松杂志,2018,24(9):1141-1147. [15] 钱伟, 陈谷才. 骨质疏松性骨折PVP/PKP术后新发骨折的相关因素分析[J]. 世界最新医学信息文摘,2018,18(94):23-24+26. [16] LI YA, LIN CL, CHANG MC, et al. Subsequent Vertebral Fracture After Vertebroplasty. Spine. 2012;37(3):179-283. [17] YANG S, LIU Y, YANG H, et al. Risk factors and correlation of secondary adjacent vertebral compression fracture in percutaneous kyphoplasty. Int J Surg. 2016;36:138-142. [18] AYTURK UM, GARCIA JJ, PUTTLITZ CM. The Micromechanical Role of the Annulus Fibrosus Components Under Physiological Loading of the Lumbar Spine. J Biomech Eng. 2010;132(6):061007. [19] TAN QC, LIU ZX, ZHAO Y, et al. Biomechanical comparison of four types of instrumentation constructs for revision surgery in lumbar adjacent segment disease: A finite element study. Comp Bio Med. 2021;134:104477. [20] ZHAO G, WANG H, WANG L, et al. The Biomechanical Effects of Different Bag‐Carrying Styles on Lumbar Spine and Paraspinal Muscles: A Combined Musculoskeletal and Finite Element Study. Orthop Surg. 2022;15(1):315-327. [21] 蔡康健, 王丽珍, 姚杰, 等.腰椎椎体有限元建模的最优单元尺寸和材料属性分布及建模方法[J]. 医用生物力学,2016,31(2):135-141. [22] WANG H, WAN Y, LIU X, et al. The biomechanical effects of Ti versus PEEK used in the PLIF surgery on lumbar spine: a finite element analysis. Comput Methods Biomech Biomed Engin. 2021;24(10):1115-1124. [23] ZHANG NZ, XIONG QS, YAO J, et al. Biomechanical changes at the adjacent segments induced by a lordotic porous interbody fusion cage. Comput Biol Med. 2022;143:105320. [24] KANG KT, KOH YG, SON J, et al. Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials. Compos B Eng. 2017; 130:248-256. [25] KIM HJ, KANG KT, CHUN HJ, et al. The influence of intrinsic disc degeneration of the adjacent segments on its stress distribution after one-level lumbar fusion. Eur Spine J. 2014;24(4):827-837. [26] POLIKEIT A, NOLTE LP, FERGUSON SJ. The Effect of Cement Augmentation on the Load Transfer in an Osteoporotic Functional Spinal Unit: Finite-Element Analysis. Spine (Phila Pa 1976). 2003;28(10):991-996. [27] 李家琼, 王冬梅, 孙璟川, 等.骨水泥对椎体成形术治疗胸腰椎骨质疏松压缩性骨折的生物力学影响[J]. 医用生物力学,2018,33(1):6-12. [28] YAMAN O, DALBAYRAK S. Kyphosis and review of the literature. Turk Neurosurg. 2014; 24(4):455-465. [29] EL-RICH M, ARNOUX PJ, WAGNAC E, et al. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech. 2009;42(9):1252-1262. [30] ZHOU R, HUANG Z, LIU X, et al. Kinematics and load-sharing of an anterior thoracolumbar spinal reconstruction construct with PEEK rods: An in vitro biomechanical study. Clin Biomech. 2016;40:1-7. [31] LIN WC, CHENG TT, LEE YC, et al. New Vertebral Osteoporotic Compression Fractures after Percutaneous Vertebroplasty: Retrospective Analysis of Risk Factors. J Vasc Int Radiol. 2008;19(2):225-231. [32] 蒋继乐,肖斌,张贵林,等. 骨水泥强化预防经皮穿刺球囊扩张椎体后凸成形术后高危患者上位节段再骨折的疗效[J]. 中国临床医学,2021,28(3):444-448. [33] LIN EP, EKHOLM S, HIWATASHI A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. AJNR Am J Neuroradiol. 2004;25(2):175-180. [34] 邢润麟,张顺聪,江晓兵,等.脊柱矢状面失衡对骨质疏松性椎体压缩性骨折椎体成形术疗效的影响[J]. 脊柱外科杂志,2017,15(2):106-110. [35] MCKIERNAN F, JENSEN R, FACISZEWSKI T. The Dynamic Mobility of Vertebral Compression Fractures. J Bone Miner Res. 2003;18(1):24-29. [36] 江晓兵, 莫凌, 梁德, 等.骨水泥在椎体骨折线内弥散情况对椎体成形术治疗效果的影响[J]. 中国脊柱脊髓杂志,2014,24(2):144-149. [37] LIN WC, CHENG TT, LEE YC, et al. New vertebral osteoporotic compression fractures after percutaneous vertebroplasty: Retrospective analysis of risk factors. J Vasc Interv Radiol. 2008;19(2 Pt 1):225-231. [38] KIM SH, KANG HS, CHOI JA, et al. Risk Factors of New Compression Fractures in Adjacent Vertebrae after Percutaneous Vertebroplasty. Acta Radiologica. 2004;45(4):440-445. [39] CHEN Z, SONG C, CHEN M, et al. What are risk factors for subsequent fracture after vertebral augmentation in patients with thoracolumbar osteoporotic vertebral fractures. BMC Musculoskelet Disord. 2021;22(1):1040. |
[1] | Li Zhifei, Yang Yin, Chen Hualong, Liang Qinqiu, Zhong Yuanming, Zhang Yisheng. Finite element analysis of the correlation between tilt angle of titanium cage and postoperative subsidence of titanium cage after anterior subtotal cervical corpectomy, decompression and fusion [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1313-1319. |
[2] | Liang Cheng, Zhang Linqi, Wang Guan, Li Wen, Duan Ke, Li Zhong, Lu Xiaobo, Zhuo Naiqiang. Finite element and biomechanical analysis of different implants in repair for unilateral unstable pelvic posterior ring injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1336-1341. |
[3] | Yang Junliang, Lu Tan, Xu Biao, Jiang Yaqiong, Wang Fucheng. Three-dimensional finite element analysis of effects of partial anterior cruciate ligament rupture on knee joint stress [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1347-1353. |
[4] | Yang Cekai, Cai Zhuoyan, Chen Ming, Liu Hao, Weng Rui, Cui Jianchao, Zhang Shuncong, Yao Zhensong. Relationship between degeneration of paraspinal muscle and refractures in postmenopausal women treated by percutaneous vertebroplasty [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1414-1419. |
[5] | Xiaheida·Yilaerjiang, Nijiati·Tuerxun, Reyila·Kuerban, Baibujiafu·Yelisi, Chen Xin. Three-dimensional finite element analysis of the distribution pattern of stress in bone tissues with different characteristics [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1277-1282. |
[6] | Tong Yibo, Li Minghui. Influencing factors of adjacent vertebral re-fracture in patients with osteoporotic vertebral fractures after percutaneous vertebroplasty [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1241-1246. |
[7] | Wang Qiang, Li Shiyun, Xiong Ying, Li Tiantian. Biomechanical changes of the cervical spine in internal fixation with different anterior cervical interbody fusion systems [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 821-826. |
[8] | Wei Yuanbiao, Lin Zhan, Chen Yanmei, Yang Tenghui, Zhao Xiao, Chen Yangsheng, Zhou Yanhui, Yang Minchao, Huang Feiqi. Finite element analysis of effects of sagittal cervical manipulation on intervertebral disc and facet joints [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 827-832. |
[9] | Zhang Rui, Wang Kun, Shen Zicong, Mao Lu, Wu Xiaotao. Effects of endoscopic foraminoplasty and laminoplasty on biomechanical properties of intervertebral disc and isthmus [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 833-839. |
[10] | Kang Zhijie, Cao Zhenhua, Xu Yangyang, Zhang Yunfeng, Jin Feng, Su Baoke, Wang Lidong, Tong Ling, Liu Qinghua, Fang Yuan, Sha Lirong, Liang Liang, Li Mengmeng, Du Yifei, Lin Lin, Wang Haiyan, Li Xiaohe, Li Zhijun. Finite element model establishment and stress analysis of lumbar-sacral intervertebral disc in ankylosing spondylitis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 840-846. |
[11] | Huang Peizhen, Dong Hang, Cai Qunbin, Lin Ziling, Huang Feng. Finite element analysis of anterograde and retrograde intramedullary nail for different areas of femoral shaft fractures [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 868-872. |
[12] | Wang Mingming, Zhang Zhong, Sun Jianhua, Zhao Gang, Song Hua, Yan Huadong, Lyu Bin. Finite element analysis of three different minimally invasive fixation methods for distal tibial fractures with soft tissue injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 879-885. |
[13] | Ning Tianliang, Wang Kun, Wang Lingbiao, Han Pengfei. Finite element analysis on correction effect of varus foot orthosis based on the three-point force principle [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 891-899. |
[14] | Liu Changzhen, Liu Xin, Li Yuefei, Wang Jianye, Feng Zhimeng, Sun Zhaozhong. Imaging landmarks of one-hole split endoscope in the treatment of upper lumbar intervertebral disc herniation under the guidance of three-dimensional reconstruction [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 939-944. |
[15] | Ji Guizhu, Zheng Qiu, Wang Wuxiang, Wang Guan, Li Wen, Lu Xiaobo, Duan Ke, Li Zhong, Yang Hongbin, Liang Cheng. Finite element simulation and experimental test of normal coracoclavicular ligament and flexible reconstruction [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(5): 706-711. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||