Chinese Journal of Tissue Engineering Research ›› 2021, Vol. 25 ›› Issue (4): 651-656.doi: 10.3969/j.issn.2095-4344.2850
Song Kaikai, Zhang Kai, Jia Long
Received:
2020-02-14
Revised:
2020-02-24
Accepted:
2020-03-25
Online:
2021-02-08
Published:
2020-11-25
Contact:
Jia Long, Master, Associate professor, Department of Orthopedic Trauma, Affiliated Hospital of Binzhou Medical College, Binzhou 256600, Shandong Province, China
About author:
Song Kaikai, Master candidate, Department of Orthopedic Trauma, Affiliated Hospital of Binzhou Medical College, Binzhou 256600, Shandong Province, China
Supported by:
CLC Number:
Song Kaikai, Zhang Kai, Jia Long. Microenvironment and repair methods of peripheral nervous system injury[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 651-656.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 微环境 周围神经损伤后,神经功能的修复与损伤的严重程度成正比,如果只是轻微的挤压、牵拉伤,神经的轴突和膜性结构完好,神经恢复良好。倘若神经的轴突和膜性结构部分或完全中断,神经功能则难以恢复到正常水平[11]。周围神经损伤的修复过程与多种因素相关,如损伤周围再生微环境的形成、轴突的出芽和延伸、神经对靶组织再支配、轴突再生等,其中再生微环境的形成是影响周围神经损伤修复的重要因素。大量实验证明Bungner氏带-许旺细胞-基底膜结构是周围神经损伤再生的最佳的微环境[12-14],这一微环境通常在伤后两三周形成,而近端神经纤维一般在伤后数小时就开始以出芽的方式再生[16-19],所以神经再生微环境的形成与近端神经纤维的再生相比,存在一定的滞后性。 2.1.1 神经再生通道的建立 周围神经离断后,近端轴突在适宜的环境下通过出芽的方式形成生长锥修复神经损伤,重建神经功能。远端轴突、髓鞘发生退行性变,崩解形成神经碎屑,损伤早期许旺细胞协助巨噬细胞清除退变的髓鞘碎屑[20],同时许旺细胞分泌的基膜素可形成基膜,其在神经再生的过程中起到促生长和通道的作用,促进轴突的生长和引导神经生长的方向[21-22]。迅速生成的基膜包绕神经碎屑,在巨噬细胞的吞噬作用下被迅速清除,基膜形成中空的基膜管,快速增殖的许旺细胞在基膜管内形成一条实心细胞索(Bungner氏带),Bungner氏带对神经轴索的长入具有良好的引导作用。只要再生的轴索与基膜管内侧接触,就会很快的生长,可见到再生的基膜对轴索的延长起到了支架的作用,同时其还对损伤神经与周围组织发生粘连起到了屏障作用[23]。在研究中发现,许旺细胞可以释放神经营养因子,其能促进轴突两断端再生形成Bungner氏带,进而加快损伤神经的修复和再生[24-26]。 2.1.2 神经营养因子调节 神经营养因子是由神经轴突、成纤维细胞、许旺细胞产生的一类具有多种活性、通过与特异性受体结合而发挥生理学效应的多肽类物质[27],主要包括4大类:①神经营养素,包括神经生长因子、脑源性神经营养因子、神经营养素3等;②神经细胞分裂素,包括睫状神经营养因子、白细胞介素1,3,6等;③成纤维细胞生长因子;④其他神经营养因子如胶质源性神经营养因子、胰岛素样生长因子、白细胞抑制因子等。神经生长因子具有促进神经再生,加快轴突生长的作用,有利于神经功能的恢复[28]。脑源性神经营养因子可以对抗损伤刺激、重塑突触、恢复神经通路。神经营养素3不仅能保持传入感觉神经的活性,还能促进运动神经元的生长。许旺细胞在神经损伤后会产生大量睫状神经营养因子,其会进入附近的轴突,对轴突的再生和受损神经元活性的维持具有保护作用[29]。还有研究证实,神经营养因子能一定程度促进神经细胞再生,加快运动神经传导速度[30]。 2.1.3 免疫反应 陈国奋等[31]发现,免疫反应与以下3种途经相关:①神经损伤破坏了血-神经屏障,神经性抗原漏出至附近的淋巴结中,产生特异性抗体,随血液循环进入神经内细胞,引起免疫反应;②神经组织内存在抗原提呈细胞,神经损伤后,抗原提呈细胞摄取神经性抗原后在其细胞膜上表达MHC-Ⅱ类抗原,并被神经内的T细胞摄取,产生免疫反应;③抗原提呈细胞摄取神经性抗原之后,也可以被神经内微血管内皮细胞提呈给血液中的T细胞,激发免疫反应。免疫反应的产生会对神经的再生修复产生明显的抑制作用。BAVETTA等[32]发现临床常用的免疫抑制药物他克莫司(即FK506)对损伤神经的再生具有促进作用,其机制可能是通过限制CaN的磷脂酶活性起到对神经的保护作用。 2.1.4 炎症反应 周围神经损伤数分钟内即发生Waller变性,伤后24 h内,许旺细胞通过基质金属蛋白酶依赖性途径降解髓鞘碱性蛋白,从而控制脱髓鞘,随后巨噬细胞穿过血管移行至神经损伤处[33]。许旺细胞和巨噬细胞吞噬变性的髓鞘,发生炎症反应。炎症反应的发生与多种炎症细胞因子有关,如巨噬细胞、辅助性T淋巴细胞(Th)、白细胞介素1、肿瘤坏死因子α等,其中巨噬细胞在炎症反应的过程中起着重要作用,巨噬细胞参与吞噬变性的髓鞘,分泌活性因子癌调蛋白促进许旺细胞的增殖,进而促进轴突的再生。Th分为Th1、Th2细胞,Th1细胞分泌γ-干扰素、白细胞介素6等前炎性细胞因子,参与细胞免疫应答;Th2细胞分泌白细胞介素4、白细胞介素10等抗炎性细胞因子,刺激B淋巴细胞产生抗体,周围神经损伤后Th1、Th2细胞同时被激活,但是以Th2细胞为主[34]。白细胞介素1作为周围神经损伤过程中非常重要的促炎性因子,其主要包括白细胞介素1α、白细胞介素1β,前者在周围神经损伤后的五六小时内,与轴突紧密接触的许旺细胞快速上调肿瘤坏死因子α、白细胞介素1α并产生mRNAs和蛋白[35];后者是在神经损伤数分钟内,由于局部钙内流激活钙敏感蛋白calpain,其似乎具有介导白细胞介素1β释放的作用[33]。有报道称白细胞介素1具备刺激许旺细胞的合成促进损伤神经再生的作用[36]。肿瘤坏死因子α多由许旺细胞、巨噬细胞、肥大细胞产生,而神经损伤部位迅速产生的肿瘤坏死因子α又可以招募到大量的巨噬细胞[37]。LIEFNER等[38]发现,在缺失肿瘤坏死因子α的大鼠坐骨神经横断模型中,巨噬细胞募集减少会延长髓磷脂的清除时间。UNCINI等[39]在大鼠坐骨神经损伤模型中注射肿瘤坏死因子α发现,肿瘤坏死因子α会破坏血-神经屏障,并引起炎症反应。有报道称,炎症反应可以加重神经损伤的程度[40]。 2.1.5 激素调节 周围神经损伤后,参与周围神经修复的激素有甲状腺激素、孕酮、促肾上腺激素等。甲状腺激素对神经系统特别是中枢神经系统的生长发育起着重要作用,它可以使非神经细胞产生神经营养因子促进轴突修复再生;也可以作用于许旺细胞维持神经元的活性和促进神经的生长[41]。孕酮对受损雄性大鼠的坐骨神经具有促进作用,它与受体结合调节许旺细胞的表达[42]。促肾上腺激素对周围神经损伤后轴突的再生具有一定的促进作用[43]。 2.2 显微外科技术 显微外科技术是以微创为前提的一种技术,目前在修复周围神经损伤方面有着广阔的前景。它能够在直视下清楚地看到神经表面的结构以及确定神经损伤的程度,可以准确地分辨神经束的形态和走行,区别正常的神经组织与瘢痕组织。在手术操作过程中,它具有解剖精确、操作轻柔、对神经组织损伤小、术后瘢痕组织形成少、修复后神经组织恢复快的特点。1964年SMITH[44]首次将显微外科技术成功应用于外周神经损伤治疗,使神经损伤能够精准对合,治疗效果较前明显改善。但是损伤修复后部分患者仍然会遗留后遗症,未能达到患者的预期,周围神经修复工作一直是创伤骨科面临的难题之一。 2.2.1 传统的神经束膜、外膜、神经束+外膜缝合术 神经外膜缝合术是在1871年由HUETES提出,此方法操作简单,创伤较小,能够保持神经外膜的解剖完整性,对神经干内部结构损伤较小,但是神经内部结构尚未吻合,通常存在扭曲、重叠、偏位的情况,有时神经外膜难以精密缝合会导致再生轴芽外向生长及结缔组织长入形成神经瘤等,影响神经生长和功能的恢复。1917年LANYBEY提出神经束膜缝合的设想,理论上在显微外科技术的帮助下可以精准缝合神经束,提高患者的恢复效果;但是在手术过程中由于仔细的分离神经束膜,外膜受损比较大,并且缝合时间较长,难以鉴别感觉束和运动束,技术要求较高,难以在基层医院得到广泛开展。神经束+外膜缝合术是将传统的神经束膜缝合术和神经外膜缝合术相结合,可以提高吻合口的抗张力性,能够弥补传统神经束、外膜缝合术的缺陷。临床上缝合方式的选择应根据神经损伤部位、损伤程度等综合考虑,穆合塔尔等[45]认为,神经干近端以混合束为主、张力较小者,应以束膜缝合术为主;黄若强等[46]的观点是功能束已经分开的远端神经修复可以应用神经外膜缝合术。 2.2.2 神经移植 神经移植包括自体神经移植和异体神经移植。自体神经移植目前仍然是治疗周围神经长段缺损的首选方法[47],其主要是以感觉和运动相对次要的周围神经为原料,切取并移植到神经缺损处行断端吻合修复周围神经缺损。对于神经缺损较小者常行断端无张力缝合,而对于神经缺损较大者首选自体神经移植。但是在实际操作过程中,自体神经移植面临诸多问题,如自体神经移植体来源极少,无法满足长段神经缺损的需求,并且所切取的神经多为感觉神经,很难与修复神经内部结构相匹配,极易引发供体区神经瘤的形成和感觉、运动功能的丧失;同时由于存在2个吻合口,进一步增加了神经再生的难度,影响神经功能的恢复[48]。异体神经移植目前面临的最主要问题是如何抑制移植后的免疫排斥反应[10],研究证明引起免疫排斥反应的主要物质是许旺细胞和髓鞘成分,为了去除这些物质减少免疫排斥反应,最经典的方法是化学去细胞法,有实验表明此法可以将许旺细胞和髓鞘成分全部清除,达到降低异体移植神经引起免疫排斥反应的目的。通过化学去细胞可以明显降低其抗原性,但是仍然保留引导神经再生的功能,临床应用较多,效果良好。在动物模型中,应用免疫抑制剂环孢素A或安慰剂的同种异体移植和自体神经移植效果相近[49]。 2.2.3 自体生物材料小间隙套接法 随着神经再生理论的提出,传统的神经修复方式逐渐被取代。小间隙套接法成为现阶段比较流行的治疗方法,它主要是在神经断端形成一个密闭的、有利于神经再生的狭小间隙,此间隙将神经再生微环境与周围组织隔离,减少了周围组织对神经再生的影响。学者们尝试着运用自体组织连接神经断端,其中最常用的是自体动脉、静脉,动、静脉在修复周围神经损伤方面已得到很多证实[50]。静脉作为自体神经移植物有其自身的优势,静脉取自自身组织,管壁具有半通透性,有利于神经再生所需营养物质的扩散和许旺细胞的长入[51];其次静脉的低成本性十分显著,位置表浅,分布广泛,对供区创伤小[52];但是静脉存在管壁薄、容易塌陷、无法维持小间隙形态的缺陷,进而影响神经再生[53]。动脉相对静脉有其自身的优越性,但是动脉是供血管道,破坏后会引起供血区的循环障碍,会增加对机体的损伤。也有学者将网膜运用于周围神经损伤的修复,但是其需要通过腹腔镜才能取得,且会加剧机体的损伤[54]。 2.2.4 合成导管小间隙套接法 合成导管分为非可降解性导管和可降解性生物导管。非可降解性导管以硅胶管为典型代表,其优点是价格低廉,手术操作难度低,并且可以调整其内径的大小,主要用于修复较粗的主干神经(如坐骨神经),但是其存在诸多问题:①极易引起患者产生异物感,常需二次手术取出,否则会对神经造成慢性卡压;②不具有通透性,影响物质交换,不利于神经修复;③极少数产生免疫排斥反应[55]。可降解性生物导管可被自身吸收,无需取出,是当今周围神经损伤修复领域研究的热点。越来越多的学者尝试用一种新型的海洋生物套管修复周围神经损伤,与传统的神经外膜缝合相比有其一定的优越性,此种海洋生物套管是由北京大学人民医院与中国纺织科学院共同发明的一种部分脱乙酰甲壳质生物套管。李剑等[56]将SD大鼠随机分成5组,A、B、C、D组将大鼠的坐骨神经切断,N组作为对照组;A、C组分别做神经外膜原位缝合和旋转180°缝合;B、D组分别做生物套管原位桥接和旋转180°桥接。6周电生理学检查,有髓神经纤维的数量A、B、D组>C组,研究证明部分脱乙酰甲壳质生物套管小间隙桥接修复周围神经损伤的效果优于断端转位的外膜缝合,具有替代外膜缝合的可行性。在实际临床工作中,无旋转的外膜缝合极少见,绝大多数都是有旋转的外膜缝合,因此生物套管小间隙桥接在临床应用中具有更广阔的前景。张培训等[57]在其基础上进一步研究,将剪碎的神经片段和神经生长因子添加到生物套管内,观察其是否能够进一步促进神经的再生;实验结果提示不管是有髓神经纤维数目还是运动、感觉神经的传导速度神经碎片,生长因子组均大于单纯生物套管组,虽然无统计学差异,但是2个实验的结果不约而同的一致,所以这种差异可能有一定的实际意义。"
[1] CERRI F, SALVATORE L, MEMON D, et al. Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials. 2014;35(13):4035-4045. [2] MCGEE AW. The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci. 2003; 26(4):193-198. [3] KIM JE,LI S,GRANDPRÉ T,et al.Axon regeneration in young adult mice lacking Nogo-A/B. Neuron. 2003;38:187-199. [4] GRANDPRÉ T, LI S, STRITTMATTER SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration.Nature. 2002;417(6888): 547-551. [5] POT C. Nogo-A expressed in Schwann cells impairs axonal regeneration after peripheral nerve injury. J Cell Biol. 2002; 159(1):29-35. [6] 王冠军,卢世璧,孙明学.周围神经趋化性再生的细胞和分子生物学机制[J].中国康复理论与实践, 2007, 13(3):258-260. [7] 姚东东,张洁元,刘彬,等.周围神经损伤修复微环境的研究进展[J]. 中国修复重建外科杂志, 2015, 29(9):116-121. [8] KUBOTA S, NISHIURA Y, HARA Y, et al.Functional and morphological effects of indirect gradual elongation of peripheral nerve: clcctrophysiological and morphological changes at different elongation rate. Hand Surg. 2011;16(2): 105-111. [9] FARONI A, MOBASSERI SA, KINGHAM PJ, et al. Peripheral nerve regeneration: Experimental strategies and future perspectives. Adv Drug Deliv Rev. 2015;82-83:160-167. [10] RINKER B, VYAS KS. Clinical applications of autografts, conduits, and allografts in repair of nerve defects in the hand. Clin Plastic Surg. 2014; 41(3):533-550. [11] SUNDERLAND S. Nerve and nerve injury. New York: Churchill Livingston. 1987:173-176. [12] LU L, LI W, ZHONG C, et al. Increased apoptosis of immunoreactive host cells and augmented donor leukocyte chimerism, not sustained inhibition of B7 molecule expression are associated with prolonged cardiac allograft survival in mice preconditioned with immature donor dendritic cells plus anti-CD40L mAb. Transplantation.1999; 68(6):747. [13] KHANNA AK, HOSENPUD JS, PLUMMER MS. Analysis of transforming growth factor-beta and profibrogenic molecules in a rat cardiac allograft model treated with cyclosporine. Transplantation. 2002;73:1543-1549. [14] SUN JB, LI BL, CZERKINSKY C, et al. Enhanced Immunological Tolerance against Allograft Rejection by Oral Administration of Allogeneic Antigen Linked to Cholera Toxin B Subunit. Clin Immunol. 2000; 97(2):130-139. [15] ASADA H, SASAJIMA T, INABA M, et al. Venous blood flow through vein grafts before harvesting minimizes endothelial cell desquamation immediately after implantation. J Cardiovasc Surg. 2004;45(2):139-142. [16] BATTAGLIA M, STABILINI A, DRAGHICI E, et al. Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance. Diabetes 2006;55:40-49. [17] WALDMANN H, GRACA L, COBBOLD S, et aI.ReguIatory T cells and organ transplantation. Semin Immunol.2004;16: 119-126. [18] SHI Q, RAFII S, WU MHD, et al. Evidence for circuIating bone manrrow derived endothelial cells,BIood.1998;92(2):362-367. [19] JARREL BE, WILLIAMS SK, STOKES G, et al.Use of freshly isolated Capillary endothelial cells for the immediate establishment of a monolayerona vascuIar graftat surgery. Surgery. 1986;100(2):392-399. [20] 徐立静,张澜,呼和,等.周围神经损伤修复方式的研究进展[J].中国实用神经疾病杂志,2016,19(22):118-120. [21] 任斐,彭婉舒,贡时雨,等.神经再生机制的研究进展[J].中国药物与临床,2014,14(4):473-476. [22] 韩峰.低浓度血清法培养纯化新生大鼠雪旺细胞[D].大连:大连医科大学,2011. [23] FENELEY MR, FAWCETT JW, KEYNES RJ. The role of Schwann cells in the regeneration of peripheral nerve axons through muscle basal lamina grafts. Exp Neurol. 1991;114(3): 275-285. [24] LV W, DENG B, DUAN W, et al. Schwann cell plasticity is regulated by a weakened intrinsic antioxidant defense system in acute peripheral nerve injury. Neuroscience. 2018;382:1-13. [25] BARTON MJ, JOHN JS, CLARKE M, et al. The Glia Response after Peripheral Nerve Injury: A Comparison between Schwann Cells and Olfactory Ensheathing Cells and Their Uses for Neural Regenerative Therapies. Int J Mol Sci. 2017;18(2): E287. [26] ENDO T, KADOYA K, KAWAMURA D, et al. Evidence for cell-contact factor involvement in neurite out growth of dorsal root ganglion neurons stimulated by Schwann cells. Exp Physiol .2019;104(10): 1014-1019. [27] HAO MV. Neruotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4(4):299-309. [28] CHEN ZY, CHAI YF, CAO L, et al. Glial cell line -derived neurotrophic factor enhances axonal regeneration following sciatic nerve transection in adult rats. Brain Res. 2001;902(2): 272-276. [29] CUI Q, LU Q, SO KF, et al. CNTF, not other trophic factors, promotes axonal regeneration of axotomized retinal ganglion cells in adult hamsters. Invest Ophthalmol Vis Sci. 1999;40(3): 760-766. [30] FAUSTINO C, RIJO P, REIS CP. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res. 2017; 120:68-87. [31] 陈国奋,顾立强,裴国献.免疫抑制状态下的神经再生[J].中国创伤骨科杂志,2000,2(2):152-154. [32] BAVETTA S, HAMLYN PJ, BURNSTOCK G, et al. The Effects of FK506 on Dorsal Column Axons Following Spinal Cord Injury in Adult Rats: Neuroprotection and Local Regeneration. Exp Neurol.1999;158(2):393. [33] AUSTIN PJ, MOALEM-TAYLOR G. The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol.2010;229(1-2):26-50. [34] 黄恒,沈若武,季爱玉,等.大鼠坐骨神经损伤修复后Thl/Th2细胞因子的表达[J].青岛大学医学院学报,2012,48(2):108-110. [35] ROTSHENKER S. Wallerian degeneration: The innate-immune response to traumatic nerve injury. J Neuroinflammation. 2011;8(1):109. [36] NISHIDA T, YANAL R. Advances in treatment for neurotrophic keratopathy. Curr Opin Ophthalmol. 2009;20(4):276-281. [37] NADEAU S, FILALI M, ZHANG J, et al. Functional recovery after peripheral nerve injury is dependent on the pro -inflammatory cytokinesIL-1beta and TNF:implications for neuropathic pain . J Neurosci. 2011;31(35):12533-12542. [38] LIEFNER M, SIEBERT H, SACHSE T, et al. The role of TNF -alpha during Wallerian degeneration. J Neuroimmunol. 2000; 108(12):147-152. [39] UNCINI A, DI MUZIO A, DI GUGLIELMO G, et al. Effect of rhTNFalpha injection into rat sciatic nerve. J Neuroimmunol. 1999;94(1-2):88-94. [40] KAN J, VELLIQUETTE RA, GRANN K, et al. A novel botanical formula prevents diabetes by improving insulin resistance. BMC Complement Altern Med. 2017;17(1):352. [41] LI WW, LE GOASCOGNE C, SCHUMACHER M, et al. Type 2 deiodinase in the peripheral nervous system:induction in the sciatic nerve after injury. Neuroscience. 2001;107(3): 507-518. [42] YU HJ, FEI J, CHEN XS, et al. Progesterone attenuates neurological behavioral deficits of experimental autoimmune encephalolnyelitis through remyelination with nuclessublocalized olig1 protein. Neurosci Lett. 2010; 476(1): 42-45. [43] MOHAMMADI R, YADEGARAZADI MJ, AMINI K. Peripheral nerve regeneration following transection injury to rat sciatic nerve by local application of adrenocorticotropic hormone. J Craniomaxillofac Surg. 2014;42(6):784-789. [44] SMITH JW. Microsurgery of peripheral nerve. Plast Reconstr Surg.1964; 33:318-324. [45] 穆合塔尔,巴吐尔•吾斯曼,盛伟斌.3种缝合方法修复周围神经损伤的临床疗效观察[J].中国伤残医学,2012,20(11):12-14. [46] 黄若强,张兆毅,邱忠朋.显微外科技术修复周围神经损伤临床观察[J].中国实用神经疾病杂志,2015,18(4):112-113. [47] MACKINNON SE. Surgical management of peripheral nerve gap. Clin Plast Surg. 1989;16:587-603. [48] DIESNER SB, RHIEM K, STEWEN K, et al. Peripheral nerve regeneration across 14-mm gaps: a comparison of autograft and entubulation repair methods in the rat. J Reconstr Microsur. 1993;9(05):349-358. [49] BAIN JR, MACKIRMON SE, HUDSON AR, et al. The peripheral nerve allograft in the primate immunosuppressed with Cyelosporin A: Histologic and electrophysiologic assessment. Plast Reconstr Surg. 1992;90(6):1036-1047. [50] GRAVVAINS AI, TSOUTSOS DA, TAGARIS GA, et al. Beneficial effect of nerve growth factor-7S on peripheral nerve regeneration through inside-out vein grafts:an experimental study. Microsurgery. 2004;24(5): 408-415. [51] 卫晓恩,韩西城.多种移植体修复周围神经的比较实验研究[J].中国修复重建外科杂志,1996,10(1):12-15. [52] RISITANO G, CAVALLARO G, MERRINO T, et al. Clinical results and thoughts on sensory nerve repair by autologous vein graft in emergency hand reconstruction. Chir Main. 2002; 21(3):194-197. [53] COUTURIER CA, DAUGE MC, HENIN D, et al. Nerve repair using a composite graft of vein and denatured skeletal muscle: morphologic analysis. J Reconstr Microsurg. 2002;18(8): 681-688. [54] PAN MJ, WANG XH, CHEN YJ, et al. Tissue engineering with peripheral blood-derived mesenchymal stem cells promotes the regeneration of injured peripheral nerves. Exp Neurol. 2017;292:92-101. [55] DAHLIN LB, ANAGNOSTAKI L, LUNDBORG G. Tissue response to silicone tubes used to repair human median and ulnar nerves. Scand J Plast Reconstr Surg Hand Surg. 2001; 35(1):29-34. [56] 李剑,姜保国,张殿英,等.生物套管小间隙桥接修复周围神经的实验研究[J].中华手外科杂志,2003,19(2):118-120. [57] 张培训,李剑,韩娜, 等.剪碎的神经片断和神经生长因子在生物套管小间隙桥接修复周围神经损伤中的作用[J].中国组织工程研究与临床康复,2008,12(23):4465-4468. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Zhang Yu, Tian Shaoqi, Zeng Guobo, Hu Chuan. Risk factors for myocardial infarction following primary total joint arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1340-1345. |
[3] | Xiao Guoqing, Liu Xuanze, Yan Yuhao, Zhong Xihong. Influencing factors of knee flexion limitation after total knee arthroplasty with posterior stabilized prostheses [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1362-1367. |
[4] | Wang Haiying, Lü Bing, Li Hui, Wang Shunyi. Posterior lumbar interbody fusion for degenerative lumbar spondylolisthesis: prediction of functional prognosis of patients based on spinopelvic parameters [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1393-1397. |
[5] | Zhang Chao, Lü Xin. Heterotopic ossification after acetabular fracture fixation: risk factors, prevention and treatment progress [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1434-1439. |
[6] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
[7] | Wang Debin, Bi Zhenggang. Related problems in anatomy mechanics, injury characteristics, fixed repair and three-dimensional technology application for olecranon fracture-dislocations [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1446-1451. |
[8] | Gu Xia, Zhao Min, Wang Pingyi, Li Yimei, Li Wenhua. Relationship between hypoxia inducible factor 1 alpha and hypoxia signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1284-1289. |
[9] | Ji Zhixiang, Lan Changgong. Polymorphism of urate transporter in gout and its correlation with gout treatment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1290-1298. |
[10] | Yuan Mei, Zhang Xinxin, Guo Yisha, Bi Xia. Diagnostic potential of circulating microRNA in vascular cognitive impairment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1299-1304. |
[11] | Wu Xun, Meng Juanhong, Zhang Jianyun, Wang Liang. Concentrated growth factors in the repair of a full-thickness condylar cartilage defect in a rabbit [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1166-1171. |
[12] | Shen Jinbo, Zhang Lin. Micro-injury of the Achilles tendon caused by acute exhaustive exercise in rats: ultrastructural changes and mechanism [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1190-1195. |
[13] | Li Jing, Xie Jianshan, Cui Huilin, Cao Ximei, Yang Yanping, Li Hairong. Expression and localization of diacylglycerol kinase zeta and protein kinase C beta II in mouse back skin with different coat colors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1196-1200. |
[14] | Chai Le, Lü Jianlan, Hu Jintao, Hu Huahui, Xu Qingjun, Yu Jinwei, Quan Renfu. Signal pathway variation after induction of inflammatory response in rats with acute spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1218-1223. |
[15] | Tan Jingyu, Liu Haiwen. Genome-wide identification, classification and phylogenetic analysis of Fasciclin gene family for osteoblast specific factor 2 [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1243-1248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||