Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (29): 4402-4408.doi: 10.3969/j.issn.2095-4344.2016.29.021
Huang He-ping
Received:
2016-05-17
Online:
2016-07-08
Published:
2016-07-08
About author:
Huang He-ping, Studying for doctorate, Associate professor, Sport College, Gannan Normal University, Ganzhou 341000, Jiangxi Province, China
CLC Number:
Huang He-ping. The role of growth factors in the repair of skeletal muscle injury[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(29): 4402-4408.
2.1 骨骼肌损伤后修复的机制 通常情况,在骨骼肌损伤后的第2-6天,骨骼肌开始出现再生和修复现象,持续三四周的时间[11]。学术界对骨骼肌损伤后的修复时间存在一些争议。一些学者表明,骨骼肌纤维是由连续排列的肌节构成,其肌细胞是多核细胞,被认为是永久性不能增生的细胞,如果出现断裂或破坏性损伤,那么就会永久性缺失,但在损伤组织周围的瘢痕组织可以代偿纤维组织[12-13]。另外一些学者认为,骨骼肌损伤后可以马上再生,但是严重的损伤后骨骼肌的再生能力有限,愈合缓慢,其机构和功能恢复不全,有一定程度的瘢痕化,容易发展再次损伤。骨骼肌损伤后的再生和修复可以分为自然修复和非自然因素干预修复[14]。其机制尚不清楚,目前学术界一致认为可以分为3个阶段:坏死组织的清除、修复期和塑形期[14-16]。 急性骨骼肌损伤后表现为红肿热痛的症状,在损伤部位出现急性炎症反应。其自然修复过程是损伤骨骼肌纤维膜的破坏,出现肌细胞内的钙离子溢出,那么局部细胞外的钙离子浓度升高,从而激活钙离子蛋白酶,炎症细胞被募集,白细胞和单核巨噬细胞都参与此局部吞噬过程,出现局部坏死[17-18]。此过程中,炎症细胞发挥了3种功能:其一,参与吞噬损伤的碎片和坏死组织细胞;其二,分泌生长因子激活骨骼肌卫星细胞,然后增殖形成新的肌细胞发育成为肌纤维,进行损伤肌纤维的修复和再生过程。第三,释放成肌细胞趋化因子和促分裂因子,例如,血管源性因子、胰岛素生长因子1和胰岛素生长因子2等。有学者研究发现,骨骼肌损伤后,机体会胰岛素生长因子1和胰岛素生长因子2会出现升高,可能损伤组织的再生和修复有关,对其变化规律尚不清楚[19-20]。体内较高浓度的胰岛素生长因子与由肝脏分泌与全身状况有关,而骨骼肌损伤局部的胰岛素生长因子是由损伤局部组织分泌与组织功能有关[21-22]。在损伤部位生长因子的信号作用下,激活处于静息状态下的骨骼肌卫星细胞,经过增殖和分化的过程,许多胚胎细胞经细胞融合形成肌管和肌纤维,最后完成骨骼肌损伤的修复和再生。 非自然因素干预骨骼肌损伤修复,包括生物学和非生物学手段,例如,药物、按摩、外源性生长因子等。研究表明,通过对观察大鼠急性拉伤后腓肠肌碱性成纤维细胞生长因子表达的时间规律,结果发现中医按摩可以促进碱性成纤维细胞生长因子的表达和对靶细胞的作用,有效得缩短了骨骼肌损伤的修复进程[23-24]。有学者研究结果表明,外源性生长因子可以促进内源性生长因子的mRNA表达,刺激成肌细胞的增殖,加速肌管融合成肌纤维,修复骨骼肌的创伤,此过程也抑制了瘢痕组织的形成,从而改善了骨骼肌的愈合质量[25-27]。云南白药对骨骼肌损伤后的修复机制,主要是把损伤骨骼肌组织的炎症细胞破坏,缩短了炎症反应的进程,从而促进骨骼肌卫星细胞的增殖和分化。 2.2 与骨骼肌损伤修复密切相关的细胞因子 2.2.1 胰岛素样生长因子对骨骼肌损伤的修复 胰岛素样生长因子是一种多肽物质,其类型可以分为胰岛素生长因子1和胰岛素生长因子2两种,有促进合成代谢作用,又有促进生长的作用[28-29]。胰岛素生长因子1基因可以选择性拼接成两种表达,一种为力生长因子(主要作用是促进骨骼肌细胞的增生,补充骨骼肌卫星细胞池;另一种为肌肉肝型生长因子(胰岛素生长因子1Ea),主要作用是促进骨骼肌成肌细胞融合形成原肌管。最新的研究结果表明,胰岛素生长因子可以促进损伤骨骼肌的卫星细胞增殖和分化,经过细胞的融合形成原肌管,从而修复损伤骨骼肌和维持萎缩肌肉的体积和功能起到重要的作用[30-33]。 骨骼肌损伤愈合过程中,内源性胰岛素生长因子的表达增加,在再生和修复的不同阶段,胰岛素生长因子1和胰岛素生长因子2的浓度会出现不同的变化。在损伤骨骼肌损伤的增殖阶段,胰岛素生长因子1出现浓度明显升高;然而在分化阶段,胰岛素生长因子2出现浓度明显升高,且增殖阶段先于分化阶段。大运动量训练后或骨骼肌损伤修复时体内可出现较高浓度的胰岛素生长因子,对其变化规律尚不清楚。机械生长因子具有激活骨骼肌卫星细胞,促进卫星细胞的增殖和分化,机械生长因子对促进骨骼肌的修复具有一定的作用[34-36]。因此,在肌肉的再生阶段,有多种类型的生长因子发挥了重要作用,其中以胰岛素生长因子1的作用最为明显。其机制可能是,胰岛素生长因子1是一种多肽物质,可以促进骨骼肌的合成代谢,从而有利于蛋白质的合成,减少了蛋白质的分解。 外源性胰岛素生长因子在临床和运动医学领域的运用,可以加速损伤骨骼肌的修复和再生,抑制或减少成肌纤维细胞增长。避免或减少瘢痕组织的形成,使肌肉可以完全再生,改善了肌肉的愈合质量。学者研究表明,通过导入胰岛素生长因子1基因到衰老或萎缩的骨骼肌部位,发现衰老或萎缩骨骼肌重新增粗,说明胰岛素样生长因子具有促进成肌细胞增殖和分化作用[37-38]。研究人员将胰岛素生长因子1注射到损伤的腓肠肌后,发现骨骼肌收缩加快和强直力增强[39],从而表明损伤后的骨骼肌修复愈合能力提高。在正常的损伤修复过程中,生长因子是用于协调细胞-细胞和细胞-基质起到至关重要的作用[40-42]。在慢性伤口治疗方面,由于生长因子的生物利用度不足(合成减少或过度降解),是导致慢性伤口主要原因。但是,外源性生长因子导入到非愈合的伤口可以促进细胞反应和复杂的伤口愈合。 2.2.2 表皮生长因子与骨骼肌损伤修复 表皮生长因子是一种多肽类调节因子,有氨基酸残基组成,有很强的促细胞分裂能力,对表皮、间质、内皮细胞在体内外都起促分裂作用。表皮生长因子是由血小板,巨噬细胞分泌,内源性表皮生长因子发挥其生物学作用的自分泌与旁分泌机制。表皮生长因子的主要功能是促进表皮细胞和间充质细胞有丝分裂的丝裂源,促进表皮细胞的生长和角质化。表皮生长因子可刺激多种细胞的增殖,主要是表皮细胞、内皮细胞。有学者研究发现,表皮生长因子能够强烈促进表皮细胞的生长,减少表皮衰老细胞的基因表达,阻止皮肤老化,保持皮肤处于最佳生理状态[43-44]。 表皮生长因子用于手术创面、烧伤、烫伤以及角膜损伤的修复和伤口的愈合有很好的疗效,但是有关其促进骨骼肌卫星细胞增殖的研究不多。成功的伤口愈合包括一些过程包括细胞迁移,细胞增殖,重新分层,以及矩阵沉积和组织重塑[45-46]。特别重要的是细胞迁移和增殖,这是由生长因子释放到损伤部位驱动协调。徐蓬等[47]学者通过对表皮生长因子促进骨骼肌卫星细胞的增殖进行研究,发现表皮生长因子对骨骼肌的卫星细胞具有促进作用,随着表皮生长因子作用浓度的增加和时间的延长,卫星细胞的增殖和分化能力增强。研究证实胰岛素生长因子1、成纤维细胞因子和表皮生长因子均能促进骨骼肌卫星细胞的增殖和分化[47]。但也有学者持不同的观点,他们认为,表皮生长因子对表皮细胞和骨骼肌卫星细胞增殖具有不同的效果,表皮生长因子对骨骼肌卫星细胞的增殖效果不明显,但表皮细胞增殖效果明显。对受伤的角膜研究发现,表皮生长因子的表达水平保持不变,这表明表皮生长因子不能直接参与刺激上皮性伤口闭合。临床试验和伤口治疗动物研究表明,在糖尿病角膜受伤的治疗中,增加局部表皮生长因子,将会使上皮伤口缝合,愈合时间缩短。因此,表皮生长因子可能仍然是有用的加速延迟性伤口的愈合。表皮生长因子对骨骼肌损伤修复作用,有待于进一步研究。 2.3 细胞生长因子参与调节肌卫星细胞激活、增殖和分化 在骨骼肌损伤后的修复和再生过程中,骨骼肌卫星细胞起到关键性的作用,主要是通过卫星细胞的激活、增殖和分化来实现的。卫星细胞在骨骼肌损伤的修复和再生中,起到关键性的作用。1961年Mauro等首次在青蛙的卫星细胞,此细胞是位于肌膜和基膜之间,是属于未分化的成肌细胞,该细胞的命名就是根据在它们与肌纤维在解剖结构上的关系得来的。骨骼肌卫星细胞与损伤后的修复和再生有关,是新的骨骼肌细胞核的来源。损伤后的骨骼肌,将处于静息状态下的卫星细胞将被激活,进一步出现增殖和分化现象,形成纺锤状的成肌细胞和融合成肌管,形成新的骨骼肌纤维。学者认为,骨骼肌损伤局部的修复,其主要途径是通过骨骼肌卫星细胞增殖和分化完成的[3,47]。 骨骼肌卫星细胞的增殖、分化和再生收到各种生长因子的调节和控制。当修复损伤的骨骼肌时,受伤局部组织会出现胰岛素生长因子升高,并参与损伤修复细胞的增殖和分化。有学者研究证实,细胞生长因子在骨骼肌损伤修复过程中起到重要的角色作用,发现在受伤骨骼肌周围的神经、血管和卫星细胞中都发现胰岛素生长因子1含量增高,与新生的成肌肉细胞可以合成胰岛素生长因子1有关。学者认为,在生肌基因和胰岛素生长因子2基因表达之间有一个自分泌环路[47],而且两者之间可以相互诱导基因表达,形成正反馈环。也就是说,胰岛素生长因子2基因表达会促进生肌基因的表达,生肌基因也会促进胰岛素生长因子2基因表达,直到胰岛素生长因子2的浓度水平升高,以达到刺激骨骼肌卫星细胞的增殖和分化过程。 也有研究表明,把外源性胰岛素生长因子1注射入肌细胞,可引起肌卫星细胞增殖的提高和肌肉数量的增加[48-49]。其可能机制其一,通过外源性的胰岛素生长因子作用,骨骼肌成肌细胞快速增长,并占据损伤坏死区域。同时,胰岛素生长因子抑制成纤维细胞的增殖,避免和减少瘢痕组织的形成,促进骨骼肌的修复和再生,改善损伤骨骼肌愈合的质量。其二,胰岛素生长因子浓度升高,改善了体内激素合成代谢环境,促进骨骼肌肌蛋白的合成,修复损伤的骨骼肌和加速损伤的愈合。因此,激活骨骼肌卫星细胞并促进其增殖分化是骨骼肌损伤愈合的重要环节。"
[1] 于新凯,石鹏超,左群.运动性损伤后大鼠骨骼肌转化生长因子-1变化的研究[J].中国体育科技,2011,5(47):128-133. [2] 潘同斌,王晓雪,唐芳,等.大负荷运动及其恢复期间大鼠骨骼肌超微结构及MGF的变化[J].中国运动医学杂志,2012, 31(10):868-871. [3] 陆耀飞.骨骼肌卫星细胞研究进展[J].健康研究,2009, 29(5):397-403. [4] 孙茹.骨骼肌损伤与修复过程中炎症反应与肌卫星细胞再生关系的研究[D].东北师范大学,2009. [5] 刘仁建,唐成林.按摩对兔骨骼肌顿挫伤修复过程中IGF-1的影响[J].激光杂志,2013, 34(4):102-104 [6] 陈宏贞.按摩对骨骼肌损伤修复过程中bFGF表达的影响[J].按摩与康复医学,2010,15(5):18-21. [7] 李云霞,陈世益,马昕,等.外源性胰岛素样生长因子-1促进骨骼肌损伤修复的实验研究[J].中华物理医学与康复杂志, 2002,24(3):147-151. [8] Niepel M, Hafner M, Pace EA, et al.Analysis of growth factor signaling in geneticallydiverse breast cancer lines. MC Biol. 2014 Mar 21;12:20. [9] Tada S, Kitajima T, Ito Y.Design and Synthesis of Binding Growth Factors. Int J Mol Sci. 2012;13:6053-6072. [10] Yu FS, Yin J, Xu K,et al.Growth factors and corneal epithelial wound healing. Brain Res Bull.2010; 81(2-3): 229-235. [11] Sandy Fritz.Sports and Exercise Massage: Comprehensive Care in Athletics, Fitness, and Rehabilitation Paperback. Elsevier-Health Sciences Division. 2013 [12] Fraser SP, Ozerlat-Gunduz I, Brackenbury WJ, et al.Charles Coombes4 Regulation of voltage-gated sodiumchannel expression in cancer: hormones,growth factors and auto-regulation. Philos Trans R Soc Lond B Biol Sci. 2014 ;369(1638):20130105. [13] 张山佳,丁树哲.运动对大鼠骨骼肌IGF-I、MGF基因表达的影响[J], 西安体育学院学报2010(27)1:80-83. [14] 陈世益,李云霞.外源性胰岛素样生长因子促进骨骼肌损伤修复的实验研究[J].中国运动医学杂志 2002,21(4):340 [15] Gallego-Colon E, Sampson RD, Sattler S, et al. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction. Mediators Inflamm. 2015;2015:484357. [16] King ER, Wong KK. Insulin-like Growth Factor: Current Concepts and New Developments in Cancer Therapy. Recent Pat Anticancer Drug Discov. 2012; 7(1):14-30. [17] Puche JE, Castilla-Cortázar I. Human conditions of insulin-like growth factor-I(IGF-I) deficiency.Journal of Translational Medicine 2012, 10:224 [18] Bhat A, Wooten RM, Jayasuriya AC.Secretion of growth factors from macrophages when culturedwith microparticles. J Biomed Mater Res A. 2013;101(11): 3170-3180. [19] Park SK, Lee JS, Choi EK, et al.Global knockdown of microRNAs affects the expression ofgrowth factors and cytokines in human adipose-derived mesenchymal stem cells. BMB Rep.2014; 47(8): 469-474 [20] Martino MM, Briquez PS, Ranga A, et al. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. [21] Masuda K.Biological repair of the degenerated intervertebral disc by the injection of growth factors.Eur Spine J.2008;17 (Suppl 4):S441-S451. [22] Zhang P, Zhang Z, Kador PF.Polyol Effects on Growth Factors and MAPKSignaling in Rat Retinal Capillary Cells. J Ocul Pharmacol Ther. 2014; 30(1): 4-11. [23] Kopec AM, Carew TJ. Growth factor signaling and memory formation:temporal and spatial integration of a molecular network. Learn Mem. 2013;20(10): 531-539. [24] 刘仁. 按摩对兔骨骼肌钝挫伤炎症及血液机制的影响[J],中国老年医学杂志,2014,34(1):128-132. [25] Hudalla GA, Kouris NA, Koepsel JT,et al.Harnessing endogenous growth factor activity modulates stem cell behavior.Integr Biol (Camb). 2011 ; 3(8): 832–842. [26] Luo JC, Peng YL, Hou MC, et al.The Diminished Expression of Proangiogenic Growth Factors and Their Receptors in Gastric Ulcers of Cirrhotic Patients. PLoS One.2013; 8(4): e61426. [27] Nair R, Ngangan AV, Kemp ML, et al.Gene Expression Signatures of Extracellular Matrix and Growth Factors during Embryonic Stem Cell Differentiation. PLoS One. 2012; 7(10): e42580. [28] Hill M, Goldspink G. Expression and Splicing of the Insulin-Like Growth Factor Gene in Rodent Muscle is Associated with Muscle Satellite (stem) Cell Activation following Local Tissue Damage. J Physiol.2003;549(Pt 2):409-418. [29] Willerth SM, Rader A, Sakiyama-Elbert SE.The Effect of Controlled Growth Factor Delivery on Embryonic Stem Cell Differentiation Inside of Fibrin Scaffolds. Stem Cell Res. 2008; 1(3): 205-218. [30] Amable PR, Carias RB, Teixeira MV, etal.Platelet-rich plasma preparation for regenerative medicine: optimization and quantification ofcytokines and growth factors. Stem Cell Research & Therapy 2013, 4:67 [31] Böhm F, Köhler UA, Speicher T, et al.Regulation of liver regeneration by growthfactors and cytokines. EMBO Mol Med. 2010; 2(8): 294-305. [32] Knöfler M.Critical growth factors and signalling pathways controllinghuman trophoblast invasion. Int J Dev Biol. 2010;54(2-3): 269-280. [33] Filippova N, Yang X, Nabors LB.Growth Factor Dependent Regulation of Centrosome Functionand Genomic Instability by HuR.Biomolecules.2015; 5: 263-281. [34] Grissa O, Yessoufou A, Mrisak I, et al.Growth factor concentrations and their placental mRNA expression are modulated in gestationaldiabetes mellitus: possible interactions withmacrosomia. BMC Pregnancy and Childbirth 2010;10:7 [35] Wan J, Zhao XF, Vojtek A, et al.Retinal injury, growth factors and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration.Cell Rep.2014; 9(1): 285-297. [36] Demidova-Rice TN, Hamblin MR, Herman IM.Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery.Adv Skin Wound Care. 2012;25(8):349-370. [37] Rowland KJ, Choi PM, Warner BW. The Role of Growth Factors in Intestinal Regeneration andRepair in Necrotizing Enterocolitis.Semin Pediatr Surg. 2013; 22(2): 101-111. [38] Shi S, Mercer S, Eckert GJ, et al.Growth factor regulation of growth factor production by multiple gene transfer to chondrocytes.Growth Factors.2013; 31(1): 32-38. [39] King WJ, Krebsbach PH.Growth factor delivery: How surface interactions modulate release in vitro and in vivo Adv Drug Deliv Rev. 2012; 64(12): 1239-1256. [40] Witsch E , Sela M , Yarden Y et al. Roles for Growth Factors in Cancer Progression.Physiology (Bethesda). 2010; 25(2): 85-101. [41] Vo TN, Kasper FK, Mikos AG.Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev.2012;64(12):1292-1309. [42] Suna X, Kang Y, Bao J, et al.Modeling Vascularized Bone Regeneration Within a Porous Biodegradable CaP Scaffold Loaded with Growth Factors. Biomaterials. 2013; 34(21): 4971-4981. [43] Fontana L, Vinciguerra M,Longo VD.Growth factors, nutrient signaling, and cardiovascular aging. Circ Res. 2012; 110(8):1139-1150. [44] Kawamura K, Chen Y, Shu Y,et al.Promotion of Human Early Embryonic Development andBlastocyst Outgrowth In Vitro Using Autocrine/Paracrine Growth Factors.PLoS One.2012; 7(11): e49328. [45] Jung H, Han S, Kim S. Construction of Regulatory Network for Insulin-Mediated Genes by Integrating Methods Based on Transcription Factor Binding Motifs and Gene Expression Variations. Genomics Inform. 2015;13(3):76-80. [46] Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches anda review of recent developments. JR Soc Interface. 2011; 8:153-170 [47] 徐蓬. EGF,TGF-β及胰岛素对兔骨骼肌卫星细胞增殖的影响[J].中华口腔医学杂志,2000,35(4): 289-291. [48] Zhu J, Clark RA.Fibronectin at select sites binds multiple growth factors (GF) and enhances their activity: expansion of the collaborative ECMGF paradigm. J Invest Dermatol. 2014; 134(4): 895–901. [49] Sood S, Gupta S, Mahendra A.Gene therapy with growth factors for periodontal tissue engineering–A review. Med Oral Patol Oral Cir Bucal. 2012;17(2): e301-10. [50] 邵素霞,马洪骏,赵春芳,等.EGF、bFGF和PHGF对大鼠骨骼肌卫星细胞增殖的影响[J], 细胞生物学杂志,2004,26 (4):425-428. [51] Vinante F, Rigo A.Heparin-Binding Epidermal Growth Factor-like GrowthFactor/Diphtheria Toxin Receptor in Normal and NeoplasticHematopoiesis. Toxins.2013;5: 1180-1201. |
[1] | Li Cai, Zhao Ting, Tan Ge, Zheng Yulin, Zhang Ruonan, Wu Yan, Tang Junming. Platelet-derived growth factor-BB promotes proliferation, differentiation and migration of skeletal muscle myoblast [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1050-1055. |
[2] | Liu Cong, Liu Su. Molecular mechanism of miR-17-5p regulation of hypoxia inducible factor-1α mediated adipocyte differentiation and angiogenesis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1069-1074. |
[3] | Ma Zetao, Zeng Hui, Wang Deli, Weng Jian, Feng Song. MicroRNA-138-5p regulates chondrocyte proliferation and autophagy [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 674-678. |
[4] | Wang Yujiao, Liu Dan, Sun Song, Sun Yong. Biphasic calcium phosphate loaded with advanced platelet rich fibrin can promote the activity of rabbit bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 504-509. |
[5] | Zhou Jihui, Yao Meng, Wang Yansong, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Influence of novel nanoscaffolds on biological behaviors of neural stem cells and the related gene expression [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 532-536. |
[6] | Chen Yang, Huang Denggao, Gao Yuanhui, Wang Shunlan, Cao Hui, Zheng Linlin, He Haowei, Luo Siqin, Xiao Jingchuan, Zhang Yingai, Zhang Shufang. Low-intensity pulsed ultrasound promotes the proliferation and adhesion of human adipose-derived mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3949-3955. |
[7] | Zhou Wu, Wang Binping, Wang Yawen, Cheng Yanan, Huang Xieshan. Transforming growth factor beta combined with bone morphogenetic protein-2 induces the proliferation and differentiation of mouse MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(23): 3630-3635. |
[8] | Yu Chengshuai, Du Gang, Pang Shenning, Lao Shan. Chemerin, a pro-inflammatory adipokine, regulates chondrocyte proliferation and metabolism by increasing production of nitric oxide [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(2): 258-263. |
[9] | Dai Yaling, Chen Lewen, He Xiaojun, Lin Huawei, Jia Weiwei, Chen Lidian, Tao Jing, Liu Weilin. Construction of miR-146b overexpression lentiviral vector and the effect on the proliferation of hippocampal neural stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 3024-3030. |
[10] | Li Xiangze, Bu Xianmin, Li Dongmei, Chi Yulei, Su Qiang, Jin Xintong, Zhao Jian, Zhang Gaotian, Wu Bin, Meng Chunyang . Stem cells, cytokines, hormones, neuropeptides and genes in traumatic brain trauma to promote fracture healing [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 3057-3063. |
[11] | Ailimaierdan·Ainiwaer, Wang Ling, Gu Li, Dilidaer•Taxifulati, Wang Shan, Yin Hongbin. Effect of transforming growth factor-beta3 on the proliferation and osteogenic capability of osteoblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(17): 2664-2669. |
[12] | Wang Renxian, Cao Jingjing, Wang Honggang, Wan Ben, Liu Weifeng. Effects of dispersants on aggregation, intracellular distribution and cell proliferation of nano-hydroxyapatite [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(16): 2500-2505. |
[13] | Jiang Tao, Wu Shuo, Li Zhiqiang, Shou Xi, Mayire·Nuermaimaiti, Ma Chuang, Wei Qin. Platelet-derived growth factor BB promotes the proliferation of bone marrow mesenchymal stem cells of Sprague-Dawley rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(13): 1976-1981. |
[14] | Yan Nan, Si Xiaofeng, Zeng Liang, Tian Wei, Shan Guangdong, Xiong Lishuo, Yang Weijie, Wang Zhengdong. Nerve growth factor interferes with proliferation and alpha-actin expression of skeletal muscle satellite cells in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(13): 2030-2035. |
[15] | Wang Huili, Chen Zhijiang, Wu Bingyi. Glia maturation factor-gamma inhibits the proliferation of human colorectal cancer LoVo cells and affects the cytoskeletal motion of human umbilical vein endothelial cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(13): 2055-2059. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||