Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (26): 5621-5631.doi: 10.12307/2025.727
Previous Articles Next Articles
Chen Yixin1, 2, Lu Yan3, 4, Zhang Xuan3, Chen Xiaoli5, Tan Liangyuan3, Xu Zhangjie1, Chen Wanglong1, Su Shaoting3, Liang Jiyao3, #br# Zhou Honghai3, 4
Received:
2024-06-03
Accepted:
2024-08-27
Online:
2025-09-18
Published:
2025-02-26
Contact:
Zhou Honghai, MD, Professor, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Biomechanics and Injury Repair in Traditional Chinese Medicine Orthopedics and Traumatology, Nanning 530200, Guangxi Zhuang Autonomous Region, China
Co-corresponding author: Lu Yan, MD, Professor, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Biomechanics and Injury Repair in Traditional Chinese Medicine Orthopedics and Traumatology, Nanning 530200, Guangxi Zhuang Autonomous Region, China
About author:
Chen Yixin, MS, Attending physician, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
Supported by:
CLC Number:
Chen Yixin, Lu Yan, Zhang Xuan, Chen Xiaoli, Tan Liangyuan, Xu Zhangjie, Chen Wanglong, Su Shaoting, Liang Jiyao, Zhou Honghai. Mechanism by which Tongan Decoction regulates synovial macrophage polarization in rats with knee osteoarthritis[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(26): 5621-5631.
2.1 实验动物数量分析 68只SD大鼠全部进入结果分析。 2.2 miR-27a在膝骨关节炎模型中低表达并与Lequesne评分负相关 模型组大鼠右侧膝关节滑膜组织大体观,见图1A。主成分分析显示模型组和正常对照组的样本分散,两组之间差异明显(图1B)。以校正P < 0.05和log2 FC的绝对值> 1为标准筛选差异基因,经过分析总共筛选出235个差异基因,其中下调最显著的基因为miR-27a(图1C),并且RT-PCR检测结果证实模型组大鼠右侧膝关节滑膜组织中miR-27a表达低于正常对照组(P < 0.001),见图1D。Lequesne行为学评分明显高于正常对照组(P < 0.001),见图1E。Pearson分析结果显示miR-27a与Lequesne行为学评分负相关(OR=-0.701,P=0.003),见图1F。 2.3 核因子κB是miR-27a的靶基因且两者相关影响 miR-27a与核因子κB具有结合区域(图2A),双荧光素酶活性实验验证两者的结合关系,在转染miR-27a野生型细胞中,核因子κB过表达组荧光素酶活性低于阴性对照组(图2B),可见miR-27a与核因子κB具有结合作用。"
2.4 痛安汤介导miR-27a/核因子κB信号通路调控滑膜巨噬细胞极化治疗膝骨关节炎的机制 2.4.1 行为学及巨噬细胞极化相关因子表达检测结果 Western blot检测结果显示,与正常对照组比较,模型组基质金属蛋白酶13、核因子κB、白细胞介素1β蛋白表达均升高(P < 0.001),白细胞介素10蛋白表达降低(P < 0.001);与模型组比较,miR-27a过表达组、痛安汤组基质金属蛋白酶13、核因子κB、白细胞介素1β蛋白表达均降低(P < 005或P < 0.01或P < 0.001),白细胞介素10蛋白表达升高(P < 0.05或P < 0.001);与痛安汤组比较,痛安汤+miR-27a抑制组基质金属蛋白酶13、核因子κB、白细胞介素1β蛋白表达均升高(P < 0.05或P < 0.01),白细胞介素10蛋白表达降低(P < 0.05),见图3A,B。 模型组大鼠右下肢Lequesne评分高于正常对照组(P < 0.001),miR-27a过表达组、痛安汤组大鼠右下肢Lequesne评分均低于模型组(P < 0.01,P < 0.05),痛安汤+miR-27a抑制组大鼠右下肢Lequesne评分高于痛安汤组(P < 0.05),见图3C。"
RT-PCR检测结果显示,与正常对照组比较,模型组基质金属蛋白酶13、核因子κB、白细胞介素1β mRNA表达均升高(P < 0.01或P < 0.001),miR-27a、白细胞介素10 mRNA表达均降低(P < 0.01,P < 0.001);与模型组比较,miR-27a过表达组、痛安汤组基质金属蛋白酶13、核因子κB、白细胞介素1β mRNA表达均降低(P < 005或P < 0.01或P < 0.001),miR-27a、白细胞介素10 mRNA表达均升高(P < 0.05或P < 0.01);与痛安汤组比较,痛安汤+miR-27a抑制组基质金属蛋白酶13、核因子κB、白细胞介素1β mRNA表达均升高(P < 0.05),miR-27a、白细胞介素10 mRNA表达均降低(P < 0.01,P < 0.05),见图3D-H。 结果表明,痛安汤调控巨噬细胞极化相关因子白细胞介素10、白细胞介素1β、核因子κB、基质金属蛋白酶13依赖miR-27a。 2.4.2 右膝关节X射线片检查结果 各组大鼠右膝关节X射线片见图4。正常对照组大鼠膝关节面光滑,间隙无狭窄,无骨赘增生;模型组大鼠膝关节面粗糙、不平整,关节间隙狭窄,关节边缘骨赘增生,符合膝骨关节炎改变特征;miR-27a过表达组及痛安汤组大鼠膝关节面平较光滑、轻度粗糙,关节边缘骨赘轻度增生;痛安汤+miR-27a抑制组大鼠膝关节面较为粗糙、欠平整,关节边缘骨赘轻度增生;造模4组大鼠膝关节间隙狭窄情况无明显差异。"
轻度减少、形态欠规则,基质染色轻度减少,潮线尚完整;痛安汤+miR-27a抑制组软骨表面不光滑,软骨细胞减少、形态不规则,基质染色中度减少,潮线欠完整。 2.4.5 右膝关节滑膜组织巨噬细胞免疫荧光染色结果 巨噬细胞M1疫荧光染色结果:CD86是巨噬细胞M1极化的免疫荧光标志物。各组大鼠右膝关节滑膜组织巨噬细胞M1免疫荧光染色结果,见图7。模型组CD86免疫荧光共染阳性表达高于正常对照组、miR-27a过表达组、痛安汤组,痛安汤+miR-27a抑制组CD86免疫荧光共染阳性表达高于高于痛安汤组。结果表明痛安汤调控巨噬细胞M1极化依赖miR-27a。 巨噬细胞M2免疫荧光染色结果:CD206是巨噬细胞M2极化的免疫荧光标志物。各组大鼠右膝关节滑膜组织巨噬细胞M2免疫荧光染色结果,见图8。模型组CD206免疫荧光共染阳性表达低于正常对照组、miR-27a过表达组、痛安汤组,痛安汤+miR-27a抑制组CD206免疫荧光共染阳性表达低于痛安汤组。结果表明痛安汤调控巨噬细胞M2极化依赖miR-27a。 M1/M0和M2/M0巨噬细胞平均吸光度值比较结果:各组大鼠膝关节滑膜组织M1/M0和M2/M0巨噬细胞平均吸光度值比较,见图9。模型组M1/M0巨噬细胞平均"
[1] PAZ-GONZÁLEZ R, BALBOA-BAREIRO V, LOURIDO L, et al. Prognostic model to predict the incidence of radiographic knee osteoarthritis. Ann Rheum Dis. 2024;83(5):661-668. [2] GENG R, LI J, YU C, et al. Knee osteoarthritis: Current status and research progress in treatment (Review). Exp Ther Med. 2023;26(4):481. [3] JI S, LIU L, LI J, et al. Prevalence and factors associated with knee osteoarthritis among middle-aged and elderly individuals in rural Tianjin: A population-based cross-sectional study. J Orthop Surg Res. 2023;18(1):266. [4] 贾笛,韦佳佳,段修权,等.基于全球视角的中国骨关节炎疾病负担分析[J].现代预防医学,2022,49(13):2312-2316. [5] 韦贵康.国医大师韦贵康验方-痛安汤[J].广西中医药,2022,45(2): 79-80. [6] 李文华,柴源,韩杰,等.痛安汤联合关节镜清理术治疗Ⅱ/Ⅲ级膝骨关节炎临床观察[J].广西中医药大学学报,2023,26(1):9-13. [7] QI Y, DING L, ZHANG S, et al. A plant immune protein enables broad antitumor response by rescuing microRNA deficiency. Cell. 2022; 185(11):1888-1904. [8] CHEKULAEVA M. First demonstration of miRNA-dependent mRNA decay. Nat Rev Mol Cell Biol. 2023;24(3):164. [9] LIU W, ZHA Z, WANG H. Upregulation of microRNA-27a inhibits synovial angiogenesis and chondrocyte apoptosis in knee osteoarthritis rats through the inhibition of PLK2. J Cell Physiol. 2019;234(12):22972-22984. [10] HU Y, GUI Z, ZHOU Y, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic Biol Med. 2019;145:146-160. [11] FELTHAM T, PAUDEL S, LOBAO M, et al. Low-intensity pulsed ultrasound suppresses synovial macrophage infiltration and inflammation in injured knees in rats. Ultrasound Med Biol. 2021;47(4):1045-1053. [12] 喻溢楠,唐成林,郭啸,等.电针对膝骨关节炎大鼠膝关节滑膜组织细胞焦亡的影响[J].针刺研究,2022,47(6):471-478. [13] BOUCHER A, KLOPFENSTEIN N, HALLAS WM, et al.The miR-23a27a24-2 microRNA Cluster Promotes Inflammatory Polarization of Macrophages. J Immunol. 2021;206(3):540-553. [14] INOMATA K, TSUJI K, ONUMA H, et al. Time course analyses of structural changes in the infrapatellar fat pad and synovial membrane during inflammation-induced persistent pain development in rat knee joint. BMC Musculoskelet Disord. 2019;20(1):8. [15] 姜楚洋,王兆南,姜洪亮,等.基于TRPV1探讨黄五甘附膏治疗膝骨关节炎外周炎性痛敏的作用机制 [J].中国实验方剂学杂志,2024, 30(14):97-106. [16] 卢梦雅,伍闲,佘泽宇,等.针刀调控线粒体途径软骨细胞凋亡防治大鼠膝骨关节炎[J].中国组织工程研究,2024,28(32):5190-5195. [17] TCHETINA EV, GLEMBA KE, MARKOVA GA, et al. Metabolic dysregulation and its role in postoperative pain among knee osteoarthritis patients. Int J Mol Sci. 2024;25(7):3857. [18] BOLANDER J, MOVIGLIA BRANDOLINA MT, POEHLING G, et al. The synovial environment steers cartilage deterioration and regeneration. Sci Adv. 2023;9(16):eade4645. [19] SANCHEZ-LOPEZ E, CORAS R, TORRES A, et al. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 2022;18:258-275. [20] WEI J, LIU L, LI Z, et al. Fire needling acupuncture suppresses cartilage damage by mediating macrophage polarization in mice with knee osteoarthritis. J Pain Res. 2022;15:1071-1082. [21] NI L, LIN Z, HU S, et al. Itaconate attenuates osteoarthritis by inhibiting STING/NF-κB axis in chondrocytes and promoting M2 polarization in macrophages. Biochem Pharmacol. 2022;198:114935. [22] MONDADORI C, CHANDRAKAR A, LOPA S, et al. Assessing the response of human primary macrophages to defined fibrous architectures fabricated by melt electrowriting. Bioact Mater. 2022;21:209-222. [23] CUTOLO M, CAMPITIELLO R, GOTELLI E, et al. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front Immunol. 2022;13:867260. [24] BADER S, TULLER T. Advanced computational predictive models of miRNA-mRNA interaction efficiency. Comput Struct Biotechnol J. 2024;23:1740-1754. [25] YING W, GAO H, DOS REIS FCG, et al. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab. 2021;33(4):781-790.e5. [26] MIHANFAR A, SHAKOURI SK, KHADEM-ANSARI MH, et al. Exosomal miRNAs in osteoarthritis. Mol Biol Rep. 2020;47(6):4737-4748. [27] LI GS, CUI L, WANG GD. MiR-155-5p regulates macrophage M1 polarization and apoptosis in the synovial fluid of patients with knee osteoarthritis. Exp Ther Med. 2021;21(1):68. [28] QIAN Y, CHU G, ZHANG L, et al. M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis. J Nanobiotechnology. 2024;22(1):72. [29] ZHANG J, CHENG F, RONG G, et al. Circular RNA hsa_circ_0005567 overexpression promotes M2 type macrophage polarization through miR-492/SOCS2 axis to inhibit osteoarthritis progression. Bioengineered. 2021;12(1):8920-8930. [30] 胡舜琪,李熙雷.miR-27a在骨关节炎治疗中的研究进展[J].上海医药,2020,41(5):50-53,75. [31] RIZZI L, TURATI M, BRESCIANI E, et al. Characterization of microRNA levels in synovial fluid from knee osteoarthritis and anterior cruciate ligament tears. Biomedicines. 2022;10(11):2909. [32] CORNICE J, VERZELLA D, ARBORETTO P, et al. NF-κB: Governing macrophages in cancer. Genes. 2024;15(2):197. [33] XIONG A, XIONG R, LUO F. Ski ameliorates synovial cell inflammation in monosodium iodoacetate-induced knee osteoarthritis. Heliyon. 2024;10(2):e24471. [34] LU J, ZHANG H, PAN J, et al. Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther. 2021;23:142. [35] SHI Y, TAO H, LI X, et al. κ-Opioid receptor activation attenuates osteoarthritis synovitis by regulating macrophage polarization through the NF-κB pathway. Acta Biochim Biophys Sin. 2024;56(1):82-95. [36] CHEN S, KANG P, ZHAO Z, et al. Danggui-Shaoyao-San (DSS) ameliorates the progression of osteoarthritis via suppressing the NF-κB signaling pathway: an in vitro and in vivo study combined with bioinformatics analysis. Aging. 2024;16(1):648-664. [37] 许学猛,高良稳,周红海,等.膝痹病(膝骨关节炎)多民族医诊疗专家共识[J].中国中医骨伤科杂志,2024,32(4):81-88. [38] 周红海,陆庆旺.韦贵康教授治疗膝骨关节炎的三味特色药浅析[J].广西中医药,2022,45(1):46-48. [39] 苏少亭,余进爵,梁栋,等.髋膝联合手法配合舒筋活血益痹汤熏洗治疗膝关节骨性关节炎临床研究[J].广西中医药,2017,40(2):43-46. [40] 李卓才,罗海英,陈一鑫,等.膝骨关节炎的微创治疗研究进展[J].微创医学,2022,17(6):784-787,814. [41] HU Y, GUI ZP, ZHOU YN, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic Biol Med. 2019;145:146-160. [42] SU WP, LIU GQ, LIU XN, et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight. 2020;5(8):e135446. [43] Cui Z, Crane J, Xie H, et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis. 2016;75(9):1714-1721. |
[1] | Wang Wentao, Hou Zhenyang, Wang Yijun, Xu Yaozeng. Apelin-13 alleviates systemic inflammatory bone loss by inhibiting macrophage M1 polarization [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1548-1555. |
[2] | Chang Jinxia, Liu Yufei, Niu Shaohui, Wang Chang, Cao Jianchun. Visualization analysis of macrophage polarization in tissue repair process [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(7): 1486-1496. |
[3] | He Guanghui, Yuan Jie, Ke Yanqin, Qiu Xiaoting, Zhang Xiaoling. Hemin regulates mitochondrial pathway of oxidative stress in mouse chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1183-1191. |
[4] | Wang Sifan, He Huiyu, Yang Quan, Han Xiangzhen. miRNA-378a overexpression of macrophage cell line composite collagen sponge: anti-inflammation and tissue repair promotion [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 789-799. |
[5] | Li Chen, Liu Ye, Ni Xindi, Zhang Yuang. Simulation analysis of real-time continuous stiffness in muscle fibers and tendons of the triceps surae during multi-joint movement [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7529-7536. |
[6] | Yang Bo, Pan Xinfang, Chang Liuhui, Ni Yong. Correlation of echocardiographic parameters with disability at 3 months after acute ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7544-7551. |
[7] | Liu Xuan, Ding Yuqing, Xia Ruohan, Wang Xianwang, Hu Shujuan. Exercise prevention and treatment of insulin resistance: role and molecular mechanism of Keap1/nuclear factor erythroid2-related factor 2 signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7578-7588. |
[8] | Gong Yuehong, Wang Mengjun, Ren Hang, Zheng Hui, Sun Jiajia, Liu Junpeng, Zhang Fei, Yang Jianhua, Hu Junping. Machine learning combined with bioinformatics screening of key genes for pulmonary fibrosis associated with cellular autophagy and experimental validation [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7679-7689. |
[9] | Han Jie, Pan Chengzhen, Shang Yuzhi, Zhang Chi. Identification of immunodiagnostic biomarkers and drug screening for steroid-induced osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7690-7700. |
[10] | Fang Ying, Zhang Yanwei, Li Xi, Yan Peidong, Bi Miao. Improvements in automatic diagnosis methods for knee osteoarthritis based on deep learning [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7511-7518. |
[11] | Fang Yuan, Qian Zhiyong, He Yuanhada, Wang Haiyan, Sha Lirong, Li Xiaohe, Liu Jing, He Yachao, Zhang Kai, Temribagen. Mechanism of Mongolian medicine Echinops sphaerocephalus L. in proliferation and angiogenesis of vascular endothelial cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7519-7528. |
[12] | Zhao Jianwei, Li Xunsheng, Lyu Jinpeng, Zhou Jue, Jiang Yidi, Yue Zhigang, Sun Hongmei. Deer antler stem cell exosome composite hydrogel promotes the repair of burned skin [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7344-7352. |
[13] | Lu Xiuli, Xu Huazhen, Chen Yuxing, Yao Nan, Hu Zixuan, Huang Dane. Mechanism of Jiangu Formula in treating osteoporosis based on osteoclast-osteoblast coupling [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(32): 6828-6835. |
[14] | Yan Laijun, Ge Haiya, Wang Zhengming, Yang Zongrui, Niu Lifeng, Zhan Hongsheng. Mechanism by which Tongdu Huoxue Decoction inhibits macrophage inflammation to delay intervertebral disc degeneration in rats [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(32): 6851-6857. |
[15] | Nigeayi · Aihemaiti, Yilidanna · Dilixiati, An Wei, Maimaitituxun · Tuerdi. Expression of mitochondrial creatine kinase 2 in a rat model of temporomandibular joint osteoarthritis and its role in inflammation progression [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(32): 6877-6884. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 282
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 165
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||