| [1] QADIR A, LIANG S, WU Z, et al. Senile osteoporosis: The involvement of differentiation and senescence of bone marrow stromal cells. Int J Mol Sci. 2020;21(1):349. [2]	李小云,林青,王昊宇,等.骨髓间充质干细胞衰老与骨质疏松症的研究进展[J].中国病理生理杂志,2023,39(10):1898-1903.
 [3]	刘少斐,许冰冰.骨髓间充质干细胞的分离、培养、鉴定及其在关节软骨损伤修复中的相关应用[J].中国比较医学杂志,2023, 33(9):149-154.
 [4]	XU W, YANG Y, LI N, et al. Interaction between mesenchymal stem cells and immune cells during bone injury repair. Int J Mol Sci. 2023; 24(19):14484.
 [5]	JIANG Y, ZHANG P, ZHANG X, et al. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif. 2021;54(1):e12956.
 [6]	LIU F, YUAN Y, BAI L, et al. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol. 2021;43:101963.
 [7]	PI C, MA C, WANG H, et al. MiR-34a suppression targets Nampt to ameliorate bone marrow mesenchymal stem cell senescence by regulating NAD+-Sirt1 pathway. Stem Cell Res Ther. 2021;12(1):271.
 [8]	LI Y, NIE J, WU Q, et al. Circ-Sirt1 promotes osteoblast differentiation by activating Sirt1 and Wnt/β-catenin pathway. Acta Biochim Pol. 2023; 70(1):51-57.
 [9]	HAN Y, YANG Q, HUANG Y, et al. Long non-coding RNA SNHG5 promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the miR-212-3p/GDF5/SMAD pathway. Stem Cell Res Ther. 2022;13(1):130.
 [10]	杨春丽,陆金芝,刘贝贝,等.大鼠骨髓间充质干细胞的原代培养及鉴定[J].现代生物医学进展,2023,23(18):3425-3430.
 [11]	YANG Q, ZOU Y, WEI X, et al. PTP1B knockdown alleviates BMSCs senescence via activating AMPK-mediated mitophagy and promotes osteogenesis in senile osteoporosis. Biochim Biophys Acta Mol Basis Dis. 2023;1869(7):166795.
 [12]	QADIR A, LIANG S, WU Z, et al. Senile Osteoporosis: The Involvement of Differentiation and Senescence of Bone Marrow Stromal Cells. Int J Mol Sci. 2020;21(1):349.
 [13]	SHMULEVICH R, KRIZHANOVSKY V. Cell senescence, DNA mamage, and metabolism. Antioxid Redox Signal. 2021;34(4):324-334.
 [14]	GROSSE L, WAGNER N, EMELYANOV A, et al. Defined p16High senescent cell types are indispensable for mouse healthspan. Cell Metab. 2020;32(1):87-99.e6.
 [15]	RITZENTHALER JD, TORRES-GONZALEZ E, ZHENG Y, et al. The profibrotic and senescence phenotype of old lung fibroblasts is reversed or ameliorated by genetic and pharmacological manipulation of Slc7a11 expression. Am J Physiol Lung Cell Mol Physiol. 2022;322(3):L449-L461.
 [16]	LIU ZZ, HONG CG, HU WB, et al. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy. 2021;17(10):2766-2782.
 [17]	XING X, TANG Q, ZOU J, et al. Bone-targeted delivery of senolytics to eliminate senescent cells increases bone formation in senile osteoporosis. Acta Biomater. 2023;157:352-366.
 [18]	LU J, ZHANG Y, LIANG J, et al. Role of exosomal microRNAs and their crosstalk with oxidative stress in the pathogenesis of osteoporosis. Oxid Med Cell Longev. 2021;2021:6301433.
 [19]	ALKAN AH, AKGÜL B. Endogenous miRNA sponges. Methods Mol Biol. 2022;2257:91-104.
 [20]	BAI WY, XIA JW, RONG XL, et al. Integrative analysis of genomic and epigenomic data reveal underlying superenhancer-mediated microRNA regulatory network for human bone mineral density. Hum Mol Genet. 2021;30(22):2177-2189.
 [21]	ZHANG Y, JIANG Y, LUO Y, et al. Interference of miR-212 and miR-384 promotes osteogenic differentiation via targeting RUNX2 in osteoporosis. Exp Mol Pathol. 2020;113:104366.
 [22]	ZHANG L, XU L, WANG Y, et al. Histone methyltransferase Setdb1 mediates osteogenic differentiation by suppressing the expression of miR-212-3p under mechanical unloading. Cell Signal. 2023;102:110554.
 [23]	XIAO F, PENG J, LI Y, et al. Small noncoding RNAome changes during human bone marrow mesenchymal stem cells senescence in bitro. Front Endocrinol (Lausanne). 2022;13:808223.
 [24]	DUAN L, ZHAO Y, JIA J, et al. Myeloid-restricted CD68 deficiency attenuates atherosclerosis via inhibition of ROS-MAPK-apoptosis axis. Biochim Biophys Acta Mol Basis Dis. 2023; 1869(5):166698.
 [25]	MARTINA JA, JEONG E, PUERTOLLANO R. p38 MAPK-dependent phosphorylation of TFEB promotes monocyte-to-macrophage differentiation. EMBO Rep. 2023;24(2):e55472.
 [26]	张玲莉,雷乐,吴伟. MAPK信号通路在骨髓间充质干细胞向成骨细胞分化中的作用[J].中华骨质疏松和骨矿盐疾病杂志,2021, 14(1):75-81.
 [27]	LIU YQ, XU YC, SHUAI ZW. Mir-142-3P regulates MAPK protein family by inhibiting 14-3-3η to enhance bone marrow mesenchymal stem cells osteogenesis. Sci Rep. 2023;13(1):22862.
 [28]	ZHANG Y, DONG Y, WEI Q, et al. miR-126 mitigates the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting the ERK1/2 and Bcl-2 pathways. Acta Biochim Biophys Sin (Shanghai). 2023;55(3):449-459.
 [29]	LIMRAKSASIN P, NATTASIT P, MANOKAWINCHOKE J, et al. Application of shear stress for enhanced osteogenic differentiation of mouse induced pluripotent stem cells. Sci Rep. 2022;12(1):19021.
 [30]	XU C, LIU H, HE Y, et al. Endothelial progenitor cells promote osteogenic differentiation in co-cultured with mesenchymal stem cells via the MAPK- dependent pathway. Stem Cell Res Ther. 2020;11(1):537.
 [31]	YAN Z, OHUCHIDA K, FEI S, et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. J Exp Clin Cancer Res. 2019;38(1):221.
 [32]	CHEN J, CHEN Z, YUAN P, et al. ERK1 loss accelerates the progression of osteoarthritis in aged mice via NRF2/BACH1 signaling. Biochem Biophys Res Commun. 2022;622:129-135.
 [33]	FATHI E, VIETOR I. Mesenchymal stem cells promote caspase expression in Molt-4 leukemia cells via GSK-3α/Β and ERK1/2 signaling pathways as a therapeutic strategy. Curr Gene Ther. 2021;21(1):81-88.
 |