Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (31): 4945-4950.doi: 10.12307/2024.707
Previous Articles Next Articles
Chen Shuang, Xi Zhipeng, Wang Nan, Fang Xiaoyang, Liu Xin, Kang Ran, Xie Lin
Received:
2023-08-28
Accepted:
2023-09-28
Online:
2024-11-08
Published:
2024-01-22
Contact:
Xi Zhipeng, MD, Associate chief physician, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
About author:
Chen Shuang, Master candidate, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
Supported by:
CLC Number:
Chen Shuang, Xi Zhipeng, Wang Nan, Fang Xiaoyang, Liu Xin, Kang Ran, Xie Lin. Quercetin targets CCR1 and CXCR4 to promote migration of human bone marrow mesenchymal stem cells[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4945-4950.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.3 分子对接结果 为了证实槲皮素能有效促进干细胞迁移,采用分子对接展示槲皮素与CCR1、CXCR4的直接相互作用。此次对接结果显示槲皮素与CCR1和CXCR4蛋白的对接结合能分别为-31.798 4和-35.145 6 kJ/mol,结合能均小于-29.301 kJ/mol[15],说明槲皮素与CCR1和CXCR4的结合作用均较为强烈。使用 PyMOL 2.3.0软件和Discovery Studio2019对两组对接结果进行可视化处理,详细对接情况如图4所示。CCR1中quercetin与CCR1中的氨基酸残基GLU-287、TYR-291和LYS-94形成3条常规氢键作用,并与TRP-90形成1条π-π堆积作用。CXCR4中quercetin与CXCR4中的氨基酸残基ASP-97和TYR-45形成2条常规氢键作用,与ALA-98形成1条π-Alkyl作用并与HIS-113、TRP-94形成4条π-π堆积作用,与ASP-97形成1条π-anion作用。上述两组对接的结合作用强烈,形成的作用力类型丰富且键数可观,为槲皮素与CCR1、CXCR4的构效关系提供了有价值的信息。"
[1] TSIAPALIS D, O’DRISCOLL L. Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications. Cells. 2020;9(4):991. [2] JANICKI P, SCHMIDMAIER G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury. 2011;42 Suppl 2:S77-81. [3] BIANCO P, RIMINUCCI M, GRONTHOS S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001; 19(3):180-192. [4] LEIBACHER J, HENSCHLER R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016;7:7. [5] ZHOU Y, WU Y, JIANG X,et al. The Effect of Quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells. PLoS One. 2015;10(6): e0129605. [6] 胡啸天,邓志钦,段莉,等.间充质干细胞归巢效应的研究进展 [J].生物骨科材料与临床研究,2020,17(5):53-57. [7] BIAN W, XIAO S, YANG L, et al. Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway. BMC Complement Med Ther. 2021;21(1):243. [8] FENG L, YANG Z, HOU N, et al. Long Non-Coding RNA Malat1 Increases the Rescuing Effect of Quercetin on TNFα-Impaired Bone Marrow Stem Cell Osteogenesis and Ovariectomy-Induced Osteoporosis. Int J Mol Sci. 2023;24(6):5965. [9] PANG XG, CONG Y, BAO NR, et al. Quercetin Stimulates Bone Marrow Mesenchymal Stem Cell Differentiation through an Estrogen Receptor-Mediated Pathway. Biomed Res Int. 2018;2018:4178021. [10] 王彦超,邓蓉蓉,叶亚东,等.补肾活血舒筋方含药血清对大鼠骨髓间充质干细胞增殖、迁移的影响及其机制[J].山东医药,2017, 57(16):38-40. [11] 李薇懿,李国春,魏乐心,等.凉血通瘀方干预高血压大鼠急性脑出血模型对脑组织中差异miRNA表达的影响[J].世界科学技术-中医药现代化,2022,24(5):1933-1943. [12] NING Y, WU Y, ZHOU Q, et al. The effect of quercetin in the yishen tongluo jiedu recipe on the development of prostate cancer through the akt1-related CXCL12/CXCR4 pathway. Comb Chem High Throughput Screen. 2023. doi: 10.2174/1386207326666230530095355. [13] LI L, CHU L, FANG Y, et al. Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats. Stem Cell Res Ther. 2017;8(1):112. [14] LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. [15] HSIN KY, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One. 2013;8(12):e83922. [16] GU JJ, LI HX, WEI W, et al. Bone marrow mesenchymal stem cell transplantation alleviates radiation-induced myocardial fibrosis through inhibition of the TGF-β1/Smad2/3 signaling pathway in rabbit model. Regen Ther. 2023;24:1-10. [17] HE Y, CHEN D, YANG L, et al. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res Ther. 2018;9(1):263. [18] LV J, HAO YN, WANG XP, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-30e-5p ameliorates high-glucose induced renal proximal tubular cell pyroptosis by inhibiting ELAVL1. Ren Fail. 2023;45(1):2177082. [19] JACKSON JS, GOLDING JP, CHAPON C, et al. Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther. 2010; 1(2):17. [20] ZHANG D, YU K, YANG J, et al. Senolytic controls bone marrow mesenchymal stem cells fate improving bone formation. Am J Transl Res. 2020;12(6):3078-3088. [21] JIANG D, WU X, SUN X, et al. Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leukemia by targeting OSBPL11. J Nanobiotechnology. 2022;20(1):29. [22] DING N, LI E, OUYANG X, et al. The Therapeutic Potential of Bone Marrow Mesenchymal Stem Cells for Articular Cartilage Regeneration in Osteoarthritis. Curr Stem Cell Res Ther. 2021;16(7):840-847. [23] ZHANG J, RONG Y, LUO C,et al. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization. Aging (Albany NY). 2020;12(24): 25138-25152. [24] XU H, XU B. BMSC-Derived Exosomes Ameliorate Osteoarthritis by Inhibiting Pyroptosis of Cartilage via Delivering miR-326 Targeting HDAC3 and STAT1//NF-κB p65 to Chondrocytes. Mediators Inflamm. 2021;2021:9972805. [25] WANG B, IRIGUCHI S, WASEDA M, et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat Biomed Eng. 2021;5(5):429-440. [26] 何波,何志军,李金鹏,等.提高间充质干细胞治疗皮瓣缺血再灌注损伤的策略[J].中国组织工程研究,2024,28(25):4065-4017. [27] 樊飞燕,张运克.益气活血中药联合骨髓间充质干细胞促进缺血性脑卒中血管新生的作用与机制[J].中国组织工程研究,2021, 25(13):2060-2069. [28] MA Y, LI Y, ZHANG S, et al. Study on the function of Huazhuo Jiedu Decoction in promoting the homing of bone marrow mesenchymal stem cells and contributing to the treatment of ulcerative colitis. Heliyon. 2023;9(8):e18802. [29] WANG N, WANG L, YANG J, et al. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway. Phytother Res. 2021. doi: 10.1002/ptr.7010. [30] YUAN Z, MIN J, ZHAO Y, et al. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats. Am J Transl Res. 2018; 10(12):4313-4321. [31] SADEGHI A, KHAZAEEL K, TABANDEH MR, et al. Prenatal exposure to crude oil vapor reduces differentiation potential of rat fetal mesenchymal stem cells by regulating ERK1/2 and PI3K signaling pathways: Protective effect of quercetin. Reprod Toxicol. 2023;120: 108440. [32] ZHAO WJ, LIU X, HU M, et al. Quercetin ameliorates oxidative stress-induced senescence in rat nucleus pulposus-derived mesenchymal stem cells via the miR-34a-5p/SIRT1 axis. World J Stem Cells. 2023; 15(8):842-865. [33] 任明亮.新型含槲皮素复合骨替代材料的制备、生物学性能及骨修复功能研究[D].广州:南方医科大学, 2019. [34] 余富勇,余翔,乡晓岚,等.补肾法促干细胞归巢在骨质疏松中的应用[J].中国骨质疏松杂志,2021,27(11):1711-1716. [35] XU J, YANG F, LUO S, et al. The Role of SDF-1α-CXCR4/CXCR7 in Migration of Human Periodontal Ligament Stem Cells. Int J Stem Cells. 2023;16(2):180-190. [36] HUANG J, ZHANG Z, GUO J, et al. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res. 2010;106(11):1753-1762. [37] AZIZ NS, AZLINA A, YUSOP N. Angiogenic and Migratory Gene Expression Analysis of Stem Cells From Exfoliated Deciduous Teeth for Wound Repair Application. Curr Stem Cell Res Ther. 2022;17(5):466-479. [38] ZHAO Z, MA X, MA J, et al. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem Biol Interact. 2018; 286:45-51. [39] ZHAO A, CHUNG M, YANG Y, et al. The SDF-1/CXCR4 Signaling Pathway Directs the Migration of Systemically Transplanted Bone Marrow Mesenchymal Stem Cells Towards the Lesion Site in a Rat Model of Spinal Cord Injury. Curr Stem Cell Res Ther. 2023;18(2):216-230. [40] 朱磊,连紫宇,胡静怡,等.健脾补肾、清肠化湿复方及其拆方对骨髓间充质干细胞增殖趋化的影响及机制研究[J].中华中医药杂志,2021,36(8):4568-4572. [41] GUO F, YANG Y, DUAN Y, et al. Quality Marker Discovery and Quality Evaluation of Eucommia ulmoides Pollen Using UPLC-QTOF-MS Combined with a DPPH-HPLC Antioxidant Activity Screening Method. Molecules. 2023;28(13):5288. |
[1] | Zuo Xinwei, Liu Gang, Bai Huizhong, Xu Lin, Zhao Yi, Ren Jingpei, Hu Chuanyu, Mu Xiaohong. Relationship between lumbar spine development and hip development in children with spastic cerebral palsy [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1247-1252. |
[2] | Mei Jingyi, Liu Jiang, Xiao Cong, Liu Peng, Zhou Haohao, Lin Zhanyi. Proliferation and metabolic patterns of smooth muscle cells during construction of tissue-engineered blood vessels [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1043-1049. |
[3] | Shen Feiyan, Yao Jixiang, Su Shanshan, Zhao Zhongmin, Tang Weidong. Knockdown of circRNA WD repeat containing protein 1 inhibits proliferation and induces apoptosis of chondrocytes in knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 499-504. |
[4] | Sun Qingfeng, Bai Shuo, Zhang Zhen, Shen Liang, Gao Beiyao, Ge Ruidong. Research progress in the effect of estrogen on tendinopathy [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(32): 5231-5237. |
[5] | Wang Xi, Yu Li, Jia Qiyu, Huang Jinyong, Liu Zebiao, Zhang Jun, Jiayidaer•Dilimulati, Xie Zengru, Ma Hairong. Effects of filament B knockdown on proliferation, migration and apoptosis of mouse MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(32): 5177-5181. |
[6] | Song Wenxue, Liao Yidong, Ming Jiang, He Longcai, Chen Guangtang, Chen Chen, Wang Zili, Xiong Mingsong, Cui Junshuan, Xu Kaya. Intracranial transplantation of human bone marrow mesenchymal stem cells alleviates rat brain ischemia-reperfusion injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 5036-5041. |
[7] | Wu Qixiang, Fang Chenyu, Zhang Lei. Interleukin-1beta enhances migration and adhesion of mesenchymal stem cells in inflammatory environments [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 5048-5054. |
[8] | Gao Jie, , , Zou Xingxing, Wen Banghong, Li Yuandi, Su Min, , , Hu Rong, , . Effect of Pax6 gene expression on hydrogen peroxide-induced aging in bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4921-4925. |
[9] | Zhao Wenjing, Liu Baikun, Li Qiulian, Chen Xi. Effects of long-term subculture on biological characteristics of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4926-4930. |
[10] | Li Huijun, Li Chuikun, Wei Cuilan, Zhang Yeting. Notch1-mediated aerobic exercise promotes hippocampal nerve cell proliferation in Alzheimer’s disease mice [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4951-4957. |
[11] | Shi Weili, Liu Shanshan, Chang Hongbo, Gao Haixia, Wang Xinzhou, Qin Nan, Wu Hong. Vascular endothelial growth factor combined with basic fibroblast growth factor improves replicative senescence of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4958-4963. |
[12] | Zhang Chike, Wang Feiqing, Wu Dan, Yang Bo, Cheng Jinyang, Chen Juan, Tang Dongxin, Liu Yang, Li Yanju. Effects of conditioned medium of acute myeloid leukemia on biology of mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 4995-5002. |
[13] | Xu Jianxia, Fu Haiyang, Qu Shoufang. In vitro human lymphocyte proliferation assay under different extraction conditions and doses of two types of test samples [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 5017-5021. |
[14] | Wu Tian, Zhao Yue, Hu Rong. Effect of nanobubbles carrying double antibodies on the proliferation of ovarian cancer cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 341-346. |
[15] | Lin Feng, Cheng Ling, Gao Yong, Zhou Jianye, Shang Qingqing. Hyaluronic acid hydrogel-encapsulated bone marrow mesenchymal stem cells promote cardiac function in myocardial infarction rats (III) [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 355-359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||