Chinese Journal of Tissue Engineering Research ›› 2020, Vol. 24 ›› Issue (31): 5079-5084.doi: 10.3969/j.issn.2095-4344.2093
Yuan Yiming1, Wang Yan2, Chen Chengcheng1, Zhao Mingyue1, Pei Fei2
Received:
2019-10-09
Revised:
2019-10-21
Accepted:
2019-12-05
Online:
2020-11-08
Published:
2020-09-05
Contact:
Wang Yan, MD, Chief physician, Professor, the Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang Province, China
About author:
Yuan Yiming, Master candidate, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
Supported by:
CLC Number:
Yuan Yiming, Wang Yan, Chen Chengcheng, Zhao Mingyue, Pei Fei. Efficacy of exosomes in peripheral nerve injury[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 5079-5084.
2.1 外泌体概述 50年前,首次在血浆中发现细胞外囊泡,在后来的研究中发现了不同种类型的细胞外囊泡,主要包括凋亡小体、脱落囊泡和外泌体[2]。脱落囊泡直接通过出芽方式从母细胞膜表面脱落产生;凋亡小体则在濒死细胞的质膜中释放,两者直径均大于100 nm;外泌体通过内吞途径产生即质膜内陷及不同区域的内膜分裂形成。外泌体是最小的细胞外囊泡,呈球形,大小为40-100 nm(也有文献说明为30-100 nm)[3]。1983年HARDING等[4]首次在大鼠的网织红细胞中发现了外泌体的释放过程;随后在1985年PAN等[5]从绵羊的网织红细胞中再次证实了外泌体的存在。 2.1.1 外泌体的释放 在外泌体的释放过程中,含有管腔囊泡的内膜部分称为多囊体,是外泌体的前体细胞器。多囊体与质膜融合后释放到细胞外空间的管腔囊泡即外泌体[6]。外泌体的释放是细胞依赖性的,受到源细胞与细胞外部环境调控。外泌体可以从多种细胞中排出,如B细胞、树突细胞、T细胞、肥大细胞、血小板、网织红细胞以及神经元等[7],还可以在多种体液中分离出来,包括血液、唾液、母乳、脑脊液和尿液等[8]。 2.1.2 外泌体成分组成 外泌体具有脂质双层膜结构,主要由蛋白质和脂质构成[8-13],蛋白质主要有2种:一种参与形成外泌体的结构,一种与细胞的来源有关,具有特异性。多囊泡胞内体生成相关蛋白质主要有ALG-2相互作用蛋白X(ALG-2-interacting protein X,Alix)、人肿瘤易感基因101(tumor susceptibility gene101,TSG101)、分子伴侣热休克蛋白(HSP70、HSP90、HSP60)、四跨膜蛋白质超家族(CD9、CD63、CD81和CD82)、RAS相关蛋白(Rab)、脂筏标记蛋白等。研究发现除上述蛋白外,还鉴定出与外泌体相关的4 400多种不同的蛋白,可能作为细胞间通讯的物 质[11]。脂质成分包括胆固醇、鞘脂、神经酰胺等。外泌体中还含有丰富的DNA、mRNA、miRNA、核糖体RNA(rRNA)、环状RNA(circRNA)和长非编码RNA(lnRNA)[13],见图1。 2.1.3 外泌体功能 在研究网织红细胞向成熟红细胞转变过程中,其分泌的外泌体将细胞内的废物从细胞中转运出去,即外泌体可以将不必要的细胞成分代谢出去以维持细胞稳态。由于不同细胞分泌的外泌体内含有的蛋白质也有所不同,在临床上通过鉴别其携带的蛋白质的类型可以进行疾病的诊断、预后分析及治疗应用,如肿瘤、慢性肝损伤、神经系统疾病等[14]。外泌体中包载有脂质、蛋白质、mRNA和miRNA等多种生物活性物质,在细胞间物质交换和信息传导的过程中起到重要作 用[15-16]。 2.2 外泌体与miRNA miRNA是高度保守的内源性非编码RNA,由20-24个核苷酸组成,广泛存在于病毒和生物中。miRNA通过与靶向信使RNA(mRNA)配对而指导转录后抑制。miRNA通常靶向mRNA的3'非翻译区(UTR)[17],它不仅调控mRNA在体内的稳定性和降解速率,控制着mRNA的利用效率,还参与mRNA翻译过程的调控[18-19],在特定情况下可以抑制下游蛋白质表达。通过上述等机制,miRNA能够参与调节不同的生物发生过程[20]。研究表明,miRNA调控超过60%的哺乳动物基因,在细胞的形成、分化、增殖、迁移、代谢和凋亡以及多种疾病发生发展中起着重要作用[21]。一般认为外泌体中的miRNA是细胞间交流的主要调节物质,可用于调节受体细胞。 研究发现,活体细胞可以主动分泌内源性miRNA、外源性miRNA以及人工miRNA。值得注意的是活体细胞所分泌的miRNA主要存在于外泌体中,因此可以免受核糖核酸酶(RNases)的影响[22]。在进一步的研究中发现,miRNA包含在CD63阳性外泌体中,受外泌体膜的保护而不受外界物质影响。包裹在外泌体中的miRNA可以靶向受体细胞,在受体细胞中发挥作用[23],介导细胞间的通讯。miRNA通过外泌体在体内循环及神经系统中的作用受到广泛关注。 2.3 外泌体与周围神经损伤 研究发现,在神经系统的发育、突触的生长以及受损神经的修复过程中都有外泌体的参与。神经系统大多数细胞都能够分泌外泌体,如星形胶质细胞、少突胶质细胞、许旺细胞等。周围神经损伤后,其他来源细胞分泌的外泌体也在神经修复中发挥关键的作用。 2.3.1 外泌体与周围神经再生 (1)许旺细胞外泌体与周围神经再生:在轴突修复过程中,许旺细胞分泌细胞因子和趋化因子将免疫细胞募集到受损区域,进一步清除髓鞘碎片[24]。此外,研究发现许旺细胞所分泌的外泌体在周围神经损伤中也有着关键作用[25]。许旺细胞来源外泌体中富集了促再生基因与控制神经元生长反应的miRNA,miRNA通过外泌体运输到神经元中[26]。LI等[27]发现许旺细胞所分泌的外泌体能够抑制GTP酶Rho(其在活化状态下会使生长锥崩溃),从而有利于周围神经损伤的恢复。LOPEZ-LEAL等[28]发现许旺细胞外泌体中含有P75NTR(可以通过调节Rho来调节生长锥,是一种能够促进再生的蛋白[29]),有助于周围神经损伤修复,并且为新的治疗策略提供了方向。 (2)间充质干细胞外泌体与周围神经再生:间充质干细胞是研究中最为常用的细胞类型之一。外泌体作为间充质干细胞分泌的主要效应物质能够在多种疾病中发挥积极作用[30-32],并且对神经元有保护作用,具有一定的免疫活性[33-34]。LOPEZ-VERRILLI等[35]研究发现间充质干细胞所分泌的外泌体能够促进轴突生长,可以通过介导miRNA、神经营养因子在细胞间的运输来诱导轴突生长。 MEAD等[36]发现骨髓间充质干细胞分泌的外泌体通过其携带的miRNA作为治疗的介导物质能够保护神经,并促进轴突再生;其他研究表明,骨髓间充质干细胞分泌的外泌体所携带的miRNA——argonaute-2 (AGO-2)是一种与治疗效果相关的关键效应分子[6],当敲除它后会降低外泌体的治疗效果,从而说明外泌体成功递送其miRNA对其神经再生功能至关重要。此外,RAO等[37]发现人牙龈衍生间充质干细胞所分泌的外泌体可以显著促进许旺细胞增殖与轴突再生。 (3)脂肪干细胞外泌体与周围神经再生:BUCAN等[38]研究证实从大鼠脂肪干细胞培养物中分离出来的外泌体能够在周围神经损伤部位促进许旺细胞增殖以及轴突生长。脂肪干细胞所分泌的外泌体(ASC-Exos)可以被轴突选择性吸收,促进损伤部位的恢复。LIU等[39]在体外实验中将脂肪干细胞来源外泌体与受损伤后的许旺细胞共同培养可以有效减少许旺细胞凋亡,促进受损许旺细胞的增殖,这种效应可能与其调节Bax和Bcl-2的表达来实现的(Bax和Bcl-2是Bcl-2基因家族的成员。Bcl-2是抗凋亡因子,而Bax是促凋亡因子)。CHEN等[40]最新研究表明脂肪干细胞来源外泌体能够通过上调相应的基因来显著促进许旺细胞增殖、迁移、髓鞘化和神经营养因子的分泌。上述这些研究表明了脂肪干细胞分泌的外泌体可以通过优化许旺细胞功能促进周围神经的再生,是再生医学和神经组织工程学的新型治疗策略。 (4)外泌体内固有成分与周围神经再生:外泌体中含有肌动蛋白和β-微管蛋白是轴突生长所必需的物质[41]。研究表明,外泌体中HSP70是支持代谢和保护神经元的关键[42]。在外泌体中还检测出Galectin-3,与髓鞘吞噬作用有关[43]。KRAMER-ALBERS等[44]发现髓磷脂蛋白如髓磷脂相关糖蛋白和脂质蛋白包裹在外泌体中,这些蛋白质也能够使神经髓鞘再生。除此之外,ZHAO等[45]发现外泌体中的环状RNA也具有修复神经的功能。 2.3.2 外泌体在周围神经损伤炎症中的作用 炎症作为组织对刺激物(如病原体或损伤)的保护性反应,用以清除死亡细胞并启动组织修复。在可控条件下进行的调节对疾病恢复有益,但是如果刺激持续存在或炎症反应长期无法解决,则会有负面效果。研究表明,外泌体可以参与到疾病中的炎症反应,通过调节炎症反应来干预疾病的发展,帮助疾病的治疗与恢复[46-47]。 蛋白组学分析发现许旺细胞分泌的外泌体中含有αB-Crystallin蛋白与Galectin-1蛋白,这2种蛋白具有抑制炎症和修复损伤神经的作用[48]。人骨髓间充质干细胞所分泌的外泌体及其携带的miRNA等能够参与到免疫应答过程中并且有效调节炎症反应,协助炎症消退[49]。 周围神经损伤后,巨噬细胞和其他炎症细胞能被募集到组织损伤部位,并促进损伤部位微环境的改变。在所有炎性细胞中,只有巨噬细胞具有促炎(M1)和抗炎(M2)作用,M1型巨噬细胞可以产生许多氧化代谢产物作为促炎因子;M2型巨噬细胞则可以产生抗炎因子,通过抑制炎症反应达到修复组织的作用[50]。TI等[51]发现脂多糖预处理的间充质干细胞外泌体(LPS pre-Exo)可以促进M2巨噬细胞活化,上调抗炎因子表达,减少炎症浸润,有效缓解慢性炎症,并指出是由于LPS pre-Exo中含有特异的miRNA能够进行高效的免疫调节。通过进一步分析发现LPS pre-Exo是通过其携带miRNA:let-7b参与调节TLR4/NF-κB/STAT3/AKT信号通路从而发挥作用。此外,最新研究发现静脉注射人脐带间充质干细胞分泌的外泌体可以将损伤后出现的M1型巨噬细胞转变成M2型巨噬细胞[52],下调炎性细胞因子从而减轻受损区域炎症,促进损伤组织愈合,并加快功能障碍的恢复。 TAGANOV等[53]发现巨噬细胞来源外泌体通过分泌蛋白质、miRNA等进入人体循环发挥保护作用。在受到炎症刺激后,外泌体中相应miRNA水平提高,证明有miRNA参与到炎症反应中。外泌体所携带的miRNA (miR-21-3p、miR-146a和miR-146b)具有预防免疫应答过度的作用,可以抑制TRL与NF-κB通路,抑制促炎症细胞因子的转录和翻译,从而降低炎症的影响并有助于消除受体细胞中的炎症。 KIM等[54]发现由白细胞介素10处理的树突状细胞所分泌的外泌体能够抑制炎症反应,减轻炎症,说明免疫细胞会响应炎症信号而主动分泌外泌体,并且分泌的外泌体在介导炎症的过程中也起着重要作用。此外,钱杰等[55]发现牙髓干细胞外泌体可以抑制小鼠的急性炎症,可能在神经炎症的治疗中有一定效果。 2.3.3 外泌体与血管再生 血管完整性在维持神经系统微环境的动态平衡中必不可少,而稳定的微环境对于神经系统的修复、发育和功能至关重要。经蛋白质组学分析间充质干细胞所分泌的外泌体含有如血管内皮生长因子、白细胞介素8等生长因子有助于血管再 生[56]。ZHANG等[34]首次发现间充质干细胞外泌体可以通过促进大鼠内源性血管生成来修复神经损伤,并认为主要是外泌体携带的miRNA和蛋白质等物质来发挥作用的。研究发现,人脐带间充质干细胞所分泌的外泌体也可以促进血管再生[57]。在实验中敲除人脐带间充质干细胞外泌体中的Wnt4则会延迟体外内皮细胞的管形成和体内CD31的表达,这表明人脐带间充质干细胞外泌体是通过Wnt途径促进血管生成和组织修复。此外,研究发现其他源细胞所分泌的外泌体同样具有修复血管的功能。JOHNSON等[58]通过使用诱导血管祖细胞(Induced vascular progenitor cells,iVPCs)所分泌的外泌体(iVPC-Exo)来促进血管再生,外泌体中富含促血管生成的蛋白(pentraxin-3、胰岛素样生长因子结合蛋白3和microRNA-143-3p、microRNA-291b、microRNA-20b-5p),这些物质与诱导血管再生有密切关系。但是,很少有研究直接说明外泌体增强血管生成从而促进周围神经再生。因此,有必要进行进一步的研究,以确定外泌体在周围神经修复过程中促进神经血管再生、改善周围神经微环境的机制。 2.3.4 其他 人脐带间充质干细胞能够有效抑制神经损伤引起的疼痛。SHIUE等[59]向背根神经节结扎大鼠髓鞘内注射人脐间充质干细胞外泌体能够有效抑制c-Fos、CNPase、GFAP和Iba1上调,同时抑制神经结扎同侧L5/6背根神经节中肿瘤坏死因子α和白细胞介素1β水平,增加白细胞介素10、脑源性神经营养因子和胶质细胞源性神经营养因子水平,从而可以有效抑制外周神经损伤所引起的疼痛。 此外,周围神经损伤可能会导致局部缺血,从而氧供不足进一步引起周围神经系统神经元的凋亡。黎博 等[60]将神经干细胞中提取的外泌体加入到CoCl2诱导的缺氧损伤的神经元模型中,可以抑制缺氧所导致的神经元凋亡,有助于神经元存活以及神经元进一步的修复。 "
[1] SAFA B, BUNCKE G. Autograft Substitutes: Conduits and Processed Nerve Allografts. Hand Clin. 2016;32(2):127-140.
[2] NAWAZ M, FATIMA F, VALLABHANENI KC, et al. Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int. 2016;2016:1073140.
[3] RAPOSO G, STOORVOGEL W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373-383.
[4] HARDING C, HEUSER J, STAHL P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329-339.
[5] PAN BT, TENG K, WU C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol.1985;101(3):942-948.
[6] ZHANG Y, CHOPP M, LIU XS, et al. Exosomes Derived from Mesenchymal Stromal Cells Promote Axonal Growth of Cortical Neurons. Mol Neurobiol. 2017;54(4):2659-2673.
[7] THÉRY C, ZITVOGEL L, AMIGORENA S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002; 2(8):569-579.
[8] JING H, HE X, ZHENG J. Exosomes and regenerative medicine: state of the art and perspectives. Transl Res. 2018;196:1-16.
[9] SIMBARI F, MCCASKILL J, COAKLEY G, et al. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology. J Extracell Vesicles. 2016;5:30741.
[10] BOBRIE A, COLOMBO M, RAPOSO G, et al. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659-1668.
[11] MATHIVANAN S, SIMPSON RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997-5000.
[12] HA D, YANG N, NADITHE V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287-296.
[13] WAHLGREN J, STATELLO L, SKOGBERG G, et al. Delivery of Small Interfering RNAs to Cells via Exosomes. Methods Mol Biol. 2016;1364:105-125.
[14] 覃思华,郑磊.外泌体蛋白质组学研究进展[J].临床检验杂志, 2016, 34(12):927-930.
[15] MITTELBRUNN M, SÁNCHEZ-MADRID F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012;13(5):328-335.
[16] LOTVALL J, VALADI H. Cell to cell signalling via exosomes through esRNA. Cell Adh Migr. 2007;1(3):156-158.
[17] BARTEL DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215-233.
[18] ENGELS BM, HUTVAGNER G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 2006;25(46):6163-6169.
[19] GUO H, INGOLIA NT, WEISSMAN JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835-840.
[20] BARTEL DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297.
[21] WANG GG, KONZE KD, TAO J. Polycomb genes, miRNA, and their deregulation in B-cell malignancies. Blood. 2015;125(8): 1217-1225.
[22] ELDH M, EKSTRÖM K, VALADI H, et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One. 2010;5(12):e15353.
[23] KOSAKA N, IGUCHI H, YOSHIOKA Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442-17452.
[24] GLENN TD, TALBOT WS. Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol. 2013;23(6):1041-1048.
[25] LOPEZ-VERRILLI MA, PICOU F, COURT FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia. 2013;61(11):1795-1806.
[26] LOPEZ-VERRILLI MA, COURT FA. Transfer of vesicles from schwann cells to axons: a novel mechanism of communication in the peripheral nervous system. Front Physiol. 2012;3:205.
[27] LI S, ZHANG R, YUAN Y, et al. MiR-340 Regulates Fibrinolysis and Axon Regrowth Following Sciatic Nerve Injury. Mol Neurobiol. 2017;54(6):4379-4389.
[28] LOPEZ-LEAL R, COURT FA. Schwann Cell Exosomes Mediate Neuron-Glia Communication and Enhance Axonal Regeneration. Cell Mol Neurobiol. 2016;36(3):429-436.
[29] LOPEZ-VERRILLI MA, COURT FA. Exosomes: mediators of communication in eukaryotes. Biol Res. 2013;46(1):5-11.
[30] GEHLER S, GALLO G, VEIEN E, et al. p75 neurotrophin receptor signaling regulates growth cone filopodial dynamics through modulating RhoA activity. J Neurosci. 2004;24(18):4363-4372.
[31] TIMMERS L, LIM SK, ARSLAN F, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 2007;1(2):129-137.
[32] BIAN S, ZHANG L, DUAN L, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92(4):387-397.
[33] XIN H, LI Y, CUI Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711-1715.
[34] ZHANG Y, CHOPP M, MENG Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856-867.
[35] LOPEZ-VERRILLI MA, CAVIEDES A, CABRERA A, et al. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience. 2016;320: 129-139.
[36] MEAD B, TOMAREV S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl Med. 2017;6(4):1273-1285.
[37] RAO F, ZHANG D, FANG T, et al. Exosomes from Human Gingiva-Derived Mesenchymal Stem Cells Combined with Biodegradable Chitin Conduits Promote Rat Sciatic Nerve Regeneration. Stem Cells Int. 2019;2019:2546367.
[38] BUCAN V, VASLAITIS D, PECK CT, et al. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury. Mol Neurobiol. 2019;56(3):1812-1824. [39] LIU CY, YIN G, SUN YD, et al. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury. CNS Neurosci Ther. 2019 Jul 6. doi: 10.1111/cns.13187.
[40] CHEN J, REN S, DUSCHER D, et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function. J Cell Physiol. 2019;234(12): 23097-23110.
[41] KALRA H, SIMPSON RJ, JI H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):e1001450.
[42] HESSVIK NP, LLORENTE A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193-208.
[43] BOSSE F. Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res. 2012;349(1):5-14.
[44] KRÄMER-ALBERS EM, BRETZ N, TENZER S, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin Appl. 2007;1(11):1446-1461.
[45] ZHAO Z, ZLOKOVIC BV. Remote control of BBB: A tale of exosomes and microRNA. Cell Res. 2017;27(7):849-850.
[46] CHAN BD, WONG WY, LEE MM, et al. Exosomes in Inflammation and Inflammatory Disease. Proteomics. 2019;19(8):e1800149.
[47] SOMMER C, LEINDERS M, ÜÇEYLER N. Inflammation in the pathophysiology of neuropathic pain. Pain. 2018;159(3):595-602.
[48] WEI Z, FAN B, DING H, et al. Proteomics analysis of Schwann cell-derived exosomes: a novel therapeutic strategy for central nervous system injury. Mol Cell Biochem. 2019;457(1-2):51-59.
[49] GAUDET AD, LEUNG M, POIRIER F, et al. A role for galectin-1 in the immune response to peripheral nerve injury. Exp Neurol. 2009; 220(2):320-327.
[50] 边洪琳,季爱玉,熊乐.周围神经损伤后背根神经节神经元及M1、M2型巨噬细胞变化[J].青岛大学医学院学报, 2016,52(5):525-528.
[51] TI D, HAO H, TONG C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 2015;13:308.
[52] SUN G, LI G, LI D, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C Mater Biol Appl. 2018;89:194-204.
[53] TAGANOV KD, BOLDIN MP, CHANG KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33): 12481-12486.
[54] KIM SH, LECHMAN ER, BIANCO N, et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol. 2005;174(10):6440-6448.
[55] 钱杰,冯兴梅.牙髓干细胞及其外泌体的应用新进展[J].交通医学, 2018,32(2):117-120.
[56] SHIH T, LINDLEY C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 2006;28(11): 1779-1802.
[57] ZHANG B, WU X, ZHANG X, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl Med. 2015;4(5): 513-522.
[58] JOHNSON TK, ZHAO L, ZHU D, et al. Exosomes derived from induced vascular progenitor cells promote angiogenesis in vitro and in an in vivo rat hindlimb ischemia model. Am J Physiol Heart Circ Physiol. 2019;317(4):H765-H776.
[59] SHIUE SJ, RAU RH, SHIUE HS, et al. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain. 2019;160(1):210-223.
[60] 黎博,魏红艳,杨焰,等.神经干细胞外泌体对低氧所致神经元凋亡的抑制作用[J].中国病理生理杂志,2018,34(4):717-722,728. |
[1] | Chen Yutong, Li Chenchen, Liu Yang, Zheng Yaqin, Yang Xihua, An Meiwen. Establishment of an acute radioactive skin injury model in Wistar rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(2): 237-241. |
[2] | Tao Guilu, Chu Tongbin, Zhang Lei. Proliferation and migration of endothelial progenitor cells promoted by bone marrow mesenchymal stem cells conditioned medium with rosiglitazone [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(1): 56-60. |
[3] | Xu Huijun, Zhang Mi, Shi Dongmei, Wu Saixuan, Lu Ying, Dong Ming, Niu Weidong. Fetal bovine serum exosomes promote the proliferation of osteoblasts [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 4961-4965. |
[4] | Gu Yubo, Zhang Dongliang, Yuan Wei, , Song Lujie. Exosomes from adipose-derived stem cells can promote cavernous nerve regeneration in rats [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 4979-4985. |
[5] | Li Zhenxiang, Jiang Xiaokui, Shen Fangfang, Li Shaoshan. Immuoregulatory effects of colorectal cancer cell-derived exosomes on CD8+ T cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 5002-5006. |
[6] | Lü Jianwei, Ma Jianxiong, Ma Xinlong. Melatonin promotes Schwann cell migration by activating a typical Wnt/β-catenin signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 5030-5037. |
[7] |
Xiang Haidong, Cheng Dongmei, Guo Han, Gao Qi .
Changes in the proliferation and angiogenesis of human dental pulp stem cells after treated with prostaglandin E1 combined with basic fibroblast growth factor [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(25): 4006-4011. |
[8] |
Zeng Zhaomu, Wen Xichao, Zhang Yuhao, Geng Lianting, Shen Yang, Zheng Kebin.
Role and application of exosomes-mediated miRNAs in the treatment of glioma [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(25): 4073-4080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||