Chinese Journal of Tissue Engineering Research ›› 2013, Vol. 17 ›› Issue (39): 6985-6990.doi: 10.3969/j.issn.2095-4344.2013.39.019
Previous Articles Next Articles
Gao Ying-jian, Wang Wei-li
Online:
2013-09-24
Published:
2013-09-24
Contact:
Wang Wei-li, Master’s supervisor, Chief physician, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
drwangwl@126.com
About author:
Gao Ying-jian★, Studying for master’s degree, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
gyj0809@126.com
CLC Number:
Gao Ying-jian, Wang Wei-li . Clinical application of minimally invasive total knee arthroplasty[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(39): 6985-6990.
2.1 微创膝关节置换定义及特点 微创膝关节置换定义[8] : ①皮肤切口长度<14 cm,但必须明确微创人工膝关节置换不能以牺牲远期效果而盲目追求小切口。②尽量避免破坏和扰乱伸膝装置。③尽量避免翻转髌骨。④操作过程中避免膝关节脱位,即原位进行股骨和胫骨的截骨。 微创膝关节置换禁忌证:微创最终能否取得成功很大程度上取决于对患者的选择是否恰当。微创不适用于已行膝关节置换而需翻修的患者。在关节畸形方面,站立时前后位线片显示膝关节内翻畸形>10°、外翻畸形>20°或者屈曲挛缩>10°者均不宜选择微创。对于糖尿病患者、过于肥胖患者、严重骨质疏松患者、不久前有或正患有膝关节化脓性关节炎者、系统使用过或正在使用类固醇类药物者、需要作软组织松解或复杂的关节重建者,也不适合使用微创[9-10] 。 微创手术技术特点:首先微创人工膝关节置换显著缩小了刀口长度,从标准的20-25 cm缩小到6-14 cm;其次,术中暴露视野主要通过“移动窗口技术”,牵开器暴露一侧时松开另一侧,以达到满意的显露;然后是手术入路的改进[11] ,目前主要有内侧髌旁入路、股内侧肌下方入路、经股内侧肌入路、前外侧入路,可以避免膝关节脱位,更好保护伸膝装置、减少损伤韧带等;最后,微创人工膝关节置换有它的特定手术器械,它们的尺寸大约比传统器械小一半。 2.2 微创膝关节置换的利与弊及康复过程 目前对于微创人工膝关节置换,各家仍众说纷纭,各持己见。大部分学者认为微创人工膝关节置换术后疼痛相对较轻,但有人提出微创和传统置换后疼痛直观评分并无显著性意义,而且减轻置换后疼痛的效果能否由药物提供呢? 另外,Thienpont等[12]将300例患者随机分入两组,一组为不损伤内侧副韧带的髌旁内侧入路,一组为传统髌内侧入路。微创人工膝关节置换组平均住院5 d,传统组为10 d,两组的KSS评分88分和87.5分、力线角度5.2°和5.5°,手术时间51 min和52 min、失血量590 mL和989 mL,从而该学者得出微创人工膝关节置换在不延长手术时间的基础上可以使患者出血更少、术后恢复更快、而且没有影像学上的假体错位。然而,文献报道置换后4周微创组的股四头肌力量强于传统组,到了置换后12周时[13] ,两个组的患者就无明显区别,说明虽然近期微创人工膝关节置换可能恢复的更快,但是就中远期效果而言微创置换并无明显优势。Liebensteiner等[14]通过在置换前后测试伸膝装置的力量,也证明微创置换并未改善股四头肌的力量恢复。 微创人工膝关节置换患者还面临着一个巨大的风险-翻修。3个中心的5位医师3年内做了237台人工膝关节置换翻修[15] ,其中44例(18.6%)为微创人工膝关节置换,193例(81.4%)传统人工膝关节置换,这些微创翻修的患者年纪相对较轻62.1岁vs 66.2岁,考虑到这其中有微创人工膝关节置换适应证因素,这些数据尚不足为奇,最惊人的是微创患者的翻修年限,仅仅14.8个月,而传统组80个月,出于微创人工膝关节置换适应证更严格的考虑,这样的数据真是令人震惊的。还有学者做出了相似报道[16] ,微创人工膝关节置换的平均翻修年限是1.4年,而传统手术为14.7年,两组患者的年龄、性别、体型并无明显区别,这样的结果对患者简直是个晴天霹雳! 美国学者比较了微创人工膝关节置换和传统手术患者的住院期间费用[17] ,发现平均总费用微创人工膝关节置换为$13 505,传统组为$14 552,相差 $1 047,同时比较了各费用大类,包括住院床位费用、手术室直接费用、药物直接治疗费用、物理治疗直接费用,其中仅有手术室内花费一项微创组高于传统组。从他的数据看来,微创人工膝关节置换患者在住院期间的直接花费是明显减少了,但是一些潜在花费呢?比如继续物理恢复治疗、出现并发症后的治疗费用,就如上文所述的翻修年限如此之短,会令患者短时间内承受第二笔更加高额的费用! 国内的微创膝关节置换如何呢?北京301医院、山东省立医院、山东省交通医院随访120例骨关节炎患者[18] ,其中42例接受常规全膝关节置换,42例接受微创全膝关节置换,36例接受避开股四头肌的微创全膝关节置换。所选患者性别比例、年龄分布、置换前的膝内外翻比例、关节活动度范围及HSS评分差异无显。所有患者置换后第2,6,12周进行膝关节HSS评分及关节活动度检测,微创全膝关节置换组及避开股四头肌的微创全膝关节置换组较常规全膝关节置换组手术时间长,出血量少,而在两微创手术组间两者差异无显著性意义。置换后2周微创全膝关节置换组及避开股四头肌的微创全膝关节置换组关节活动度、HSS评分均优于常规全膝关节置换组,两微创组间关节活动度差异无显著性意义,但避开股四头肌的微创全膝关节置换组HSS评分优于微创全膝关节置换组;置换后6,12周3组HSS评分及关节活动度差异无显著意义。还有学者将60例(70膝)入组患者随机分成2组进行前瞻性对照研究。微创组取股内侧肌下切口入路,采用美国捷迈公司特殊的微创器械,利用膝关节屈伸位置的不断变化和“移动窗口”技术行微创全膝关节置换本[19] 。对照组采用标准全膝关节置换手术。结果,术后1周KSS评分、引流管出血量、切口长度和术后无协助负重行走时间(下地时间)方面,微创组手术效果优于传统对照组,2组差异有显著性意义。术后12周2组KSS评分、关节活动范围增加度数比较,差异无显著性意义。他得出结论微创全膝关节置换术具有手术切口小、出血少、股四头肌功能千扰少等优点,可以减轻置换后疼痛,尽早恢复下肢活动,更佳的短期随访手术效果。刘军等[20]学者也对微创膝关节置换和传统置换组患者进行比较,得出的结论类似,术后住院时间、切口长度、下地时间均小于传统组,而置换后1个月、3个月行走距离无明显差异,微创组1例患者置换后3个月出现关节弹响,予以关节镜清理增生软组织后症状缓解。国内学者们的临床研究基本得出的结论也一致,微创膝关节置换可以获得更好的早期康复,如切口小、出血少、置换后疼痛轻等优点,但最长仅以3个月的随访期限来讨论,更长的结果呢?关节寿命如何呢,这方面国内似乎尚缺乏相关报道,但这却是一个至关重要的问题。 2.2 计算机辅助技术在微创膝关节置换领域的应用 目前微创膝关节置换有2个发展方向,一是小切口微创技术,二是计算机辅助。世界上第一台计算机辅助微创膝关节置换在2002年完成,随后世界各地学者纷纷开始该方面研究。微创关节置换的更为重要的发展路线是新技术路线,包括计算机辅助手术、组合式假体和假体小型化。特别是计算机导航系统已逐渐发展并运用于膝关节置换,解决了存在于机械性手术操作系统的内在缺陷[21] 。计算机辅助人工膝关节置换手术系统,可以实时反映患者解剖及截骨情况,医生通过屏幕实时获得信息支持,实现人机互动,也可以模拟膝关节实际情况在置换前制定良好的手术方案,为手术计划的实施和及时调整提供方便,这是传统手术方式无法达到的[22-23] 。张先龙等[24]对40例入组患者随机分成两组进行前瞻性对照研究,对照组采用标准全膝关节置换手术,导航微创组采用计算机导航下经股内侧肌入路人工全膝关节置换。比较两组病例的切口大小、术后引流量、手术时间、术后6周KSS评分,并采用影像学评价下肢力线和假体位置。结果表明计算机导航辅助下微创人工全膝关节置换具有切口小、不干扰股骨髓腔、出血少、下肢功能恢复快等优点,同时能够恢复下肢的机械轴线,假体位置安装正确,使操作具有高的准确性和可重复性。喻忠等[25]在导航系统下进行小切口微创膝关节单髁置换术26例。统计切口大小、手术时间、出血量和48 h引流量,进行HISS评分分析,测量下肢力线和关节活动度。结果在导航系统下顺利完成26例小切口微创膝关节单髁置换,手术切口大小为7.0-8.0 cm,手术时间为70-90 min,出血量为100-150 mL和48 h引流量80-150 mL。术前HISS评分72分,术后2周为98分。术前髋膝踝角为5°-10°,术后2周为0°-200术前屈曲挛缩0°-10°膝关节活动度为100°-120°,术后2周屈曲挛缩0°-4°,膝关节活动度为125°-135°。26例均获随访,平均随访时间8.2个月,无感染、假体位置不良及髌股关节疼痛等并发症。实验说明了计算机导航系统的应用解决了微创膝关节置换操作中视野的局限,同时可以实时、动态地观察下肢力线变化、膝关节假体旋转对位和软组织韧带平衡情况,并提供几何学和形态学资料,对膝关节进行生物力学和解剖学的重建,提高了假体放置的精确性,使骨质和假体之间有了最大的贴合度,具有重要的临床价值。 那么计算机导航全膝关节置换后恢复、并发症是否会有所改观呢?Hoppe等[26]随访了全膝置换的84例患者中78例置换前、置换后2年、置换后5年KSS评分、膝关节评分和标准正侧位X射线平片发现,虽然计算机导航的微创全膝关节置换术后临床和影像学上的力线更加完美,但是两组之间的KSS评分,功能评分,关节活动角度没有差异,也就是说增加的费用、计算机导航所费的更长止血带时间[27] 、手术时间都没有体现出相应价值[28] 。Hasegawa等[29]的研究证明计算机导航在截骨和假体安装时都有很大意义,因为他的团队证明计算机导航后力线角度差异仅0.5°-1.0°。 Kim等[30]随访520例患者,这些患者均先后行双侧全膝关节置换,其中一个为传统膝关节置换,另一侧为计算机导航下膝关节置换,平均随访年限为10.8年,结果提示膝关节功能评分、疼痛评分、关节活动角度等并无差异,同时力线和假体寿命也基本无差别,计算机导航组10.8年膝关节翻修概率98.8%,传统组99.2%。目前支持计算机导航全膝关节置换有更好的临床结果,更长的假体寿命,更佳的术后膝关节功能的临床证据不足。大部分研究最多提出计算机导航组的力线比传统组更佳完美[31] ,而无其他临床恢复方面的区别,Kim等[32]也提出类似观点。但是存在的问题很严重,各地不断有相关病例报道,包括打固定针时造成血管意外[33] 、固定针松动[34] 、固定针固定失败[35] ,想必这和手术视野的减小密不可分。更重要的是,在Gothesen等[36]的研究中指出,计算机导航下全膝关节置换术的患者翻修率更高,这样似乎所有的所谓优势都成了泡沫。 国内如何呢?王诗军等[37]通过X射线和CT对术后假体位置进行影像学分析,比较计算机导航关节置换术是否优于传统的手术方式,从 2010年1月到 2011年2月,共对 160 例患者进行了人工全膝关节置换,其中70 例实施了计算机导航辅助下的全膝关节置换,另外90例实施传统手术组,两组间性别、年龄、置换前下肢力线角度差异无显著性意义,置换后2周通过影像学分析,导航组患者的力线均优于传统手术组,导航组术中出血多于非导航组,非导航组手术时间平均比导航组手术时间缩短16 min,但两组间无统计学差异,从而得出计算机导航辅助人工全膝关节置换与传统手术相比可以获得更精确的下肢力线。许伟华等[38]比较计算机导航全膝关节置换和传统手术术后下肢力线,导航组髋-膝-踝角平均偏差角度(0.7±0.2)°小于常规组(1.2±0.3)°,差异有显著性意义;导航组额面股骨部分角平均偏差角度(1.5±0.4)°小于传统组(2.1±0.5)°,差异有显著性意义。导航组额面胫骨部分角(1.4±0.5)°平均偏差角度小于传统组(1.5±0.66)°,差异无显著性意义。导航组侧面股骨部分角(7.3±0.40)°和侧面胫骨部分角(2.5±0.2)°,平均偏差角度均小于传统组(9.5±0.4)°、(4.5±0.6)°,差异均有显著性意义,导航组平均手术时间比传统组延长15-28 min,差异有显著性意义。李桓毅等[39]选23例24膝初次膝关节置换患者,应用无需影像资料的计算机辅助导航仪辅助下行后稳定型人工全膝关节置换手术,将从股骨远端和胫骨近端所截下的骨质用游标卡尺测量与计算机计算的数值比较,平均随访6.2个月(3-9个月)。HSS评分由置换前49.7分,置换后增至72分,6个月后为81.2分。股骨远端截骨厚度计算值为(9.30±0.47) mm,测量值为(9.22±0.53) mm,(P=0.21);胫骨平台最高点截骨厚度计算值为(10.24±0.31) mm,测最值为(10.29±0.43) mm,(P=0.61);胫骨平台最低点截骨厚度计算值为(3.46±0.04) mm,测量值为(3.21±0.05) mm,(P=0.18),证明了计算机导航下确实可以将截骨做的更加精确。但是,总的来说,国内的学者目前对计算机导航下的全膝关节置换的研究比较有限,虽然手术时间延长,但有力线的改善、截骨精确等优点,然而,缺乏假体寿命、翻修时间原因等的报道,这些关键问题有待进一步随访研究。 虽然微创技术在不断进步,无论从理论上还是实践上都具有强大的吸引力,但对该项技术的理解、应用和开展仍然存在争议和误区[40] ,但微创膝关节置换是进步的趋势,尤其是计算机辅助手术导航系统的应用,置换前患者解剖、病理、生理等资料均被输入计算机中,系统会模拟设计出最佳手术方案;置换过程中,连接在手术刀上的红外线探头将实施传送手术实况,并根据已有三维资料和方案,指导医生手术操作,计算机导航系统的应用使微创置换更加精确[41] 。"
[1]Nestor BJ, Toulson CE, Backus SI,et al. Mini-midvastus vs standard medial parapatellar approach: a prospective, randomized, double-blinded study in patients undergoing bilateral total knee arthroplasty. J Arthroplasty. 2010;25 (6 Suppl):5-11, 11.e1. [2]Liu Z, Yang H. Comparison of the minimally invasive and standard medial parapatellar approaches for total knee arthroplasty: systematic review and meta-analysis. J Int Med Res. 2011;39(5):1607-1617. [3]Li XG, Tang TS, Qian ZL, et al. Comparison of the mini-midvastus with the mini-medial parapatellar approach in primary TKA. Orthopedics. 2010;33(10):723. [4]宋玉成,方锐,盂庆才,等.微创手术与标准手术在全膝关节置换疗效中的系统评价[J].中华医学杂志,2012,92(3):209-213. [5]王国伟,孙水,林永杰,等.骨关节炎患者全膝关节置换:多中心的随机对照[J].中国组织工程研究与临床康复,2011,15(4):571- 574. [6]中国组织工程研究与临床康复杂志社.导航下小切口:手术更精准更微创更安全[J]. 中国组织工程研究与临床康复, 2009,13 (48): 9470-9470. [7]沈灏,张先龙,王琦,等. 微创全膝关节置换术的早期临床疗效分析[J]. 中华外科杂志,2007,45(16):1083-1086. [8]Tria AJ Jr. Minimally invasive total knee arthroplasty: the importance of instrumentation. Orthop Clin North Am. 2004; 35(2):227-234. [9]王志强,黄伟,梁熙,等. 微创与传统膝关节置换术失血量比较[J]. 中华创伤杂志,2013,29(1):38-42. [10]刘晓东,蔡珉巍,涂意辉.微创膝关节单髁置换术治疗膝关节内侧间室骨性关节炎的初步临床报告[J].中国矫形外科杂志,2010, 18(7):548-552. [11]Chiang H, Lee CC, Lin WP, et al. Comparison of quadriceps-sparing minimally invasive and medial parapatellar total knee arthroplasty: a 2-year follow-up study. J Formos Med Assoc. 2012;111(12):698-704. [12]Thienpont E. Faster recovery after minimally invasive surgery in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2012 Mar 31. [13]Stevens-Lapsley JE, Bade MJ, Shulman BC, et al. Minimally invasive total knee arthroplasty improves early knee strength but not functional performance: a randomized controlled trial. J Arthroplasty.2012;27(10):1812-1819.e2. [14]Liebensteiner MC, Krismer M, Koller A, et al. Does minimally invasive total knee arthroplasty improve isokinetic torque. Clin Orthop Relat Res. 2012;470(11):3233-3239. [15]Barrack RL, Barnes CL, Burnett RS, et al. Minimal incision surgery as a risk factor for early failure of total knee arthroplasty. J Arthroplasty. 2009;24(4):489-98. [16]Graw BP, Woolson ST, Huddleston HG, et al. Minimal incision surgery as a risk factor for early failure of total hip arthroplasty. Clin Orthop Relat Res. 2010;468(9):2372-2376. [17]King JC, Manner PA, Stamper DL, et al. Is minimally invasive total knee arthroplasty associated with lower costs than traditional TKA. Clin Orthop Relat Res. 2011;469(6): 1716-1720. [18]王国伟,孙水,林永杰,等. 骨关节炎患者全膝关节置换:多中心的随机对照[J].中国组织工程研究与临床康复,2011,15(4): 571-574. [19]李煜明. 微创全膝关节置换术的早期疗效观察[J].实用老年医学, 2012,26(6):472-474. [20]刘军,孙振辉,田峥巍,等. 股内侧肌下入路全膝关节置换术初步观察研究[J]. 中国矫形外科杂志,2008,16(9):649-652. [21]刘晓东,涂意辉,蔡珉巍,等. 计算机辅助导航下的微创膝关节单髁置换[J]. 中国组织工程研究与临床康复,2011,15(35):6504- 6508. [22]Pandher DS, Oh KJ, Boaparai RS, et al. Computer-assisted navigation increases precision of component placement in total knee arthroplasty. Clin Orthop Relat Res. 2007;454: 281-282. [23]Hernández-Vaquero D, Suarez-Vazquez A, Sandoval-Garcia MA,et al. Computer assistance increases precision of component placement in total knee arthroplasty with articular deformity. Clin Orthop Relat Res. 2010;468(5):1237-1241. [24]张先龙,邵俊杰,王琦, 等. 计算机导航辅助下微创人工全膝关节置换的初步经验[J]. 中华骨科杂志,2006,26(10):654-660. [25]喻忠,王黎明,桂鉴超,等. 计算机导航辅助下微创膝关节单髁置换术的初步临床研究[J].中华关节外科杂志(电子版),2007, 1(4): 234-237. [26]Hoppe S, Mainzer JD, Frauchiger L, et al. More accurate component alignment in navigated total knee arthroplasty has no clinical benefit at 5-year follow-up. Acta Orthop. 2012;83(6): 629-633. [27]Darmanis S, Toms A, Durman R, et al. A technical innovation for improving identification of the trackers by the LED cameras in navigation-assisted total knee arthroplasty. Comput Aided Surg. 2007;12(4):247-251. [28]Chauhan SK, Scott RG, Breidahl W, et al. Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomised, prospective trial. J Bone Joint Surg Br.2004; 86(3):372-377. [29]Hasegawa M, Yoshida K, Wakabayashi H, et al. Cutting and implanting errors in minimally invasive total knee arthroplasty using a navigation system. Int Orthop, 2013;37(1):27-30. [30]Kim YH, Park JW, Kim JS. Computer-navigated versus conventional total knee arthroplasty a prospective randomized trial. J Bone Joint Surg Am. 2012;94(22): 2017-2024. [31]Smith JR, Rowe PJ, Blyth M, et al. The effect of electromagnetic navigation in total knee arthroplasty on knee kinematics during functional activities using flexible electrogoniometry. Clin Biomech (Bristol, Avon). 2013;28(1): 23-28. [32]Kim YH, Park JW, Kim JS. Computer-navigated versus conventional total knee arthroplasty a prospective randomized trial. J Bone Joint Surg Am. 2012;94(22): 2017-2024. [33]Gulhane S, Holloway I, Bartlett M. A vascular complication in computer navigated total knee arthroplasty. Indian J Orthop. 2013;47(1):98-100. [34]Stockl B, Nogler M, Rosiek R, et al. Navigation improves accuracy of rotational alignment in total knee arthroplasty. Clin Orthop Relat Res. 2004;426:180-186. [35]Hernandez-Vaquero D, Suarez-Vazquez A. Complications of fixed infrared emitters in computer-assisted total knee arthroplasties. BMC Musculoskelet Disord.2007;8:71. [36]Gothesen O, Espehaug B, Havelin L, et al. Short-term outcome of 1,465 computer-navigated primary total knee replacements 2005-2008. Acta Orthop. 2011;82(3):293-300. [37]王诗军,张树栋,赵中原,等. 计算机导航全膝关节置换术与传统手术的比较[J].中华关节外科杂志(电子版),2012,6(5):702-709. [38]许伟华,杨述华,陈东,等. 计算机导航辅助下与传统全膝关节置换术后下肢力线和假体位置的比较[J]. 中华创伤骨科杂志, 2011, 13(12):1130-1134. [39] 李桓毅,刘方刚,陈建民,等. 计算机导航下全膝关节置换截骨的精确度比较[J].中国矫形外科杂志,2011,19(9):731-733. [40]Jenny JY, Clemens U, Kohler S, et al. Consistency of implantation of a total knee arthroplasty with a non-image-based navigation system: a case-control study of 235 cases compared with 235 conventionally implanted prostheses. J Arthroplasty. 2005;20(7):832-839. [41]Haaker RG, Stockheim M, Kamp M, et al. Computer-assisted navigation increases precision of component placement in total knee arthroplasty. Clin Orthop Relat Res. 2005;433: 152-159. [42]Majima T, Nishiike O, Sawaguchi N, et al. Arthritis. Patella Eversion Reduces Early Knee Range of Motion and Muscle Torque Recovery after Total Knee Arthroplasty: Comparison between Minimally Invasive Total Knee Arthroplasty and Conventional Total Knee Arthroplasty. 2011;2011:854651. [43]Cheng T, Pan XY, Mao X, et al. Little clinical advantage of computer-assisted navigation over conventional instrumentation in primary total knee arthroplasty at early follow-up. Knee. 2012;19(4):237-245. [44]Cheng T, Zhang G, Zhang X. Imageless navigation system does not improve component rotational alignment in total knee arthroplasty. J Surg Res. 2011;171(2):590-600. |
[1] | Huang Dengcheng, Wang Zhike, Cao Xuewei. Comparison of the short-term efficacy of extracorporeal shock wave therapy for middle-aged and elderly knee osteoarthritis: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1471-1476. |
[2] | Zhong Hehe, Sun Pengpeng, Sang Peng, Wu Shuhong, Liu Yi. Evaluation of knee stability after simulated reconstruction of the core ligament of the posterolateral complex [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 821-825. |
[3] | Liu Shaohua, Zhou Guanming, Chen Xicong, Xiao Keming, Cai Jian, Liu Xiaofang. Influence of anterior cruciate ligament defect on the mid-term outcome of fixed-bearing unicompartmental knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 860-865. |
[4] | Huang Dengcheng, Wang Zhike, Cao Xuewei. Intravenous, topical tranexamic acid alone or their combination in total knee arthroplasty: a meta-analysis of randomized controlled trials [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 948-956. |
[5] | He Xiangzhong, Chen Haiyun, Liu Jun, Lü Yang, Pan Jianke, Yang Wenbin, He Jingwen, Huang Junhan. Platelet-rich plasma combined with microfracture versus microfracture in the treatment of knee cartilage lesions: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 964-969. |
[6] | Liu Xin, Yan Feihua, Hong Kunhao. Delaying cartilage degeneration by regulating the expression of aquaporins in rats with knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 668-673. |
[7] | Xie Chongxin, Zhang Lei. Comparison of knee degeneration after anterior cruciate ligament reconstruction with or without remnant preservation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 735-740. |
[8] | Wang Weigang, Yang Zhidong, Feng Zongquan, Wang Ding. A mid-term clinical follow-up of unicompartmental knee arthroplasty with fixed bearing [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 368-373. |
[9] | Wang Xiaofei, Teng Xueren, Cong Linyan, Zhou Xu, Ma Zhenhua. Herbert screw internal fixation for treating adult osteochondritis dissecans of the knees [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 397-402. |
[10] | Cheng Chongjie, Yan Yan, Zhang Qidong, Guo Wanshou. Diagnostic value and accuracy of D-dimer in periprosthetic joint infection: a systematic review and meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3921-3928. |
[11] | Wang Dasai, Zhang Yang, Cheng Yin, Wang Qiang. Efficacy and safety of staged versus simultaneous unicompartmental knee arthroplasty: a meta-analysis#br# [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3929-3936. |
[12] | Luo Anyu, Liu Hanlin, Xie Xiaofei, Huang Chen. Effect of antioxidant mixture on structural degeneration of an osteoarthritis rat model [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(23): 3625-3629. |
[13] | Yu Yinghao, Zhao Jijun, Liu Dongcheng, Chen Yuhao, Feng Dehong. Clinical significance of preoperative planning assisted unicompartmental knee arthroplasty with digital imaging system for fixed-bearing prosthesis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(21): 3324-3331. |
[14] | Deng Zhibo, Li Zhi, Wu Yahong, Mu Yuan, Mu Yuexi, Yin Liangjun. Local infiltration anesthesia versus femoral nerve block for pain control and safety after total knee arthroplasty: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(21): 3401-3408. |
[15] | Xu Hui, Kang Bingxin, Zhong Sheng, Gao Chenxin, Zhao Chi, Qiu Guowei, Sun Songtao, Xie Jun, Xiao Lianbo, Shi Qi. Pressing local acupoints plus adjustion of the knee joint in a sitting position for treating knee osteoarthritis: a randomized controlled trial [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(2): 216-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||