Chinese Journal of Tissue Engineering Research ›› 2026, Vol. 30 ›› Issue (3): 642-651.doi: 10.12307/2026.052
Previous Articles Next Articles
Abuduwupuer·Haibier1, 2, Shang Qisong1, 2, Song Xinghua1, 2
Received:
2024-11-05
Accepted:
2025-01-06
Online:
2026-01-28
Published:
2025-07-04
Contact:
Song Xinghua, MD, Chief physician, Doctoral supervisor, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China; Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous Region, China
About author:
Abuduwupuer·Haibier, Physician, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China; Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous Region, China
Shang Qisong, Doctoral candidate, Chief physician, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China; Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous Region, China
Abuduwupuer·Haibier and Shang Qisong contributed equally to this article.
Supported by:
CLC Number:
Abuduwupuer·Haibier, Shang Qisong Song Xinghua. Analysis of factors for recurrent fractures of vertebral and adjacent vertebrae after osteoporotic compression fracture in the elderly patients with underlying diseases[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(3): 642-651.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.4 二元logistic回归分析 基于两组间的单因素结果,将所有P < 0.05的变量(年龄、骨水泥渗漏情况、吸烟史> 10年、高血压病史、2型糖尿病史、脊柱侧弯病史、脊柱手术病史、慢性肾脏病史)均纳入了二元logistic回归分析模型。进一步分析显示,以下因素与研究结果显著相关:骨水泥渗漏情况(OR=2.547,95%CI:1.283-5.048,P < 0.05)、吸烟史> 10年(OR=2.336,95%CI:1.157-4.701,P < 0.05)、高血压病史(OR=4.657,95%CI:2.137-10.242,P < 0.05)、2型糖尿病史(OR=8.956,95%CI:3.941-21.301,P < 0.05)、脊柱侧弯病史(OR=3.754,95%CI:1.755-8.619,P < 0.05)、脊柱手术病史(OR=2.700,95%CI:1.058-6.725,P < 0.05)、慢性肾脏病史(OR=2.812,95%CI:1.078-7.739,P < 0.05)为手术椎体及邻近椎体再发骨折的危险因素,见表4及图2,3。"
2.5 OVCF患者在经皮椎体成形术后发生再骨折的敏感性 表5敏感性分析结果表明,糖尿病的AUC值最高,为0.733,表明该特征在区分正负样本方面表现较好。脊柱手术史和高血压的AUC值也相对较高,分别为0.698和0.680。灵敏度和特异度显示,脊柱侧弯灵敏度较高,分别为0.760和0.760,这表明它们能有效识别出阳性样本;糖尿病的特异度非常高,达到0.958,显示出其在识别阴性样本方面的优越性;慢性肾脏病史的特异度也较高,为0.849。约登指数显示,糖尿病的约登指数最高(0.465),表明该特征在总体分类性能上较为优越;脊柱手术史的约登指数(0.395)也表现良好。准确度显示,糖尿病的准确度最高(0.877),显示该特征可以很好地预测样本。另外骨水泥渗漏AUC值为0.644,表明骨水泥渗漏这一特征在区分正负样本时具有一定的预测能力,但可能还需要结合其他特征来提高模型的预测能力。结合以上分析,可以考虑在模型中优先使用糖尿病、脊柱手术史和高血压作为关键特征,以提高分类模型的整体性能。"
[1] 阿卜杜吾普尔·海比尔,阿里木江·玉素甫,林航,等. 经皮椎体成形术中骨水泥分布对手术及邻近椎体再发骨折的影响[J].中国组织工程研究,2024,28(29):4657-4662. [2] CAREY JJ, CHIH-HSING WU P, BERGIN D. Risk assessment tools for osteoporosis and fractures in 2022. Best Pract Res Clin Rheumatol. 2022;36(3):101775. [3] LIU AF, GUO TC, FENG HC, et al. Efficacy and safety of early versus delayed reconstruction for anterior cruciate ligament injuries: A systematic review and meta-analysis. Knee. 2023;44:43-58. [4] 朱洁云,高敏,宋秋韵,等.中国老年人骨质疏松症患病率的Meta分析[J].中国全科医学,2022,25(3):346-353. [5] YIN P, ZHU SQ, ZHANG YS, et al. The clinical effect of percutaneous curved kyphoplasty for osteoporosis vertebral compression fractures. Zhonghua Wai Ke Za Zhi. 2021;59(6):458-463. [6] CHEN H, PAN W, ZHANG Y, et al. Epidemiological and clinical characteristics analysis of 681 cases of thoracolumbar osteoporotic vertebral compression fractures. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022;36(7):873-880. [7] SYU DK, HSU SH, YEH PC, et al. The association between coronary artery disease and osteoporosis: a population-based longitudinal study in Taiwan. Arch Osteoporos. 2022;17(1):91. [8] WANG J, XIE X, GOU Y, et al. Forearm bone mineral density as a predictor of adjacent vertebral refracture after percutaneous kyphoplasty in patients with osteoporotic vertebral compression fracture: a retrospective analysis. J Orthop Surg Res. 2024;19(1):788. [9] QI B, KONG X, MENG C, et al. Analysis of the impact of underlying diseases in the elderly on postoperative re-fractures after osteoporotic compression fractures. J Orthop Surg Res. 2024;19(1):556. [10] TANG J, WANG S, WANG J, et al. Risk factors for secondary vertebral compression fracture after percutaneous vertebral augmentation: a single-centre retrospective study. J Orthop Surg Res. 2024;19(1):797. [11] WANG R, XU Y, MA X. Risk factors and strategies for recovery quality, postoperative pain, and recurrent fractures between percutaneous kyphoplasty and percutaneous vertebroplasty in elderly patients with thoracolumbar compression fractures: a retrospective comparative cohort study. Ann Transl Med. 2023;11(2):122. [12] 包志强,陈扬.经皮椎体成形术后再发骨折的研究进展[J].中国矫形外科杂志,2024,32(2):150-155. [13] DEPALMA MJ, KETCHUM JM, FRANKEL BM, et al. Percutaneous vertebroplasty for osteoporotic vertebral compression fractures in the nonagenarians: a prospective study evaluating pain reduction and new symptomatic fracture rate. Spine (Phila Pa 1976). 2011;36(4):277-282. [14] CHIN KY. A review on the performance of osteoporosis self-assessment tool for Asians in determining osteoporosis and fracture risk. Postgrad Med. 2017;129(7):734-746. [15] IMAI K. Vertebral fracture risk and alendronate effects on osteoporosis assessed by a computed tomography-based nonlinear finite element method. J Bone Miner Metab. 2011;29(6):645-651. [16] SYED MI, PATEL NA, JAN S, et al. Intradiskal extravasation with low-volume cement filling in percutaneous vertebroplasty. AJNR Am J Neuroradiol. 2005;26(9):2397-2401. [17] 阿卜杜吾普尔·海比尔,阿里木江·玉素甫,麦麦提敏·阿卜力米提,等.经皮椎体成形术后骨水泥量和分布对手术椎体及邻近椎体再发骨折的影响[J].中国组织工程研究,2024,28(10):1586-1591. [18] GAO C, ZONG M, WANG WT, et al. Analysis of risk factors causing short-term cement leakages and long-term complications after percutaneous kyphoplasty for osteoporotic vertebral compression fractures. Acta Radiol. 2018;59(5):577-585. [19] ZHOU C, HUANG S, LIAO Y, et al. Correlation analysis of larger side bone cement volume/vertebral body volume ratio with adjacent vertebral compression fractures during vertebroplasty. Front Endocrinol (Lausanne). 2023;14:1072087. [20] KOMEMUSHI A, TANIGAWA N, KARIYA S, et al. Percutaneous vertebroplasty for osteoporotic compression fracture: multivariate study of predictors of new vertebral body fracture [J]. Cardiovasc Intervent Radiol, 2006;29(4):580-585. [21] 李涛,于涛.吸烟性骨质疏松症发病机制研究进展[J].中国骨质疏松杂志,2010,16(5):381-386. [22] 杨波,陈晓峰,段媛媛,等.结合吸烟与遗传因素交互作用鉴定骨质疏松症易感基因[J].西安交通大学学报(医学版),2018,39(4): 589-596. [23] COSTA-RODRIGUES J, ROCHA I, FERNANDES MH. Complex osteoclastogenic inductive effects of nicotine over hydroxyapatite. J Cell Physiol. 2018;233(2):1029-1040. [24] JOEHANES R, JUST AC, MARIONI RE, et al. Epigenetic Signatures of Cigarette Smoking. Circ Cardiovasc Genet. 2016;9(5):436-447. [25] KIYOTA Y, MURAMATSU H, SATO Y, et al. Smoking cessation increases levels of osteocalcin and uncarboxylated osteocalcin in human sera. Sci Rep. 2020;10(1):16845. [26] ILIĆ K, OBRADOVIĆ N, VUJASINOVIĆ-STUPAR N. The relationship among hypertension, antihypertensive medications, and osteoporosis: a narrative review. Calcif Tissue Int. 2013;92(3):217-227. [27] MASUGATA H, SENDA S, INUKAI M, et al. Association between bone mineral density and arterial stiffness in hypertensive patients. Tohoku J Exp Med. 2011;223(2):85-90. [28] VESTERGAARD P, REJNMARK L, MOSEKILDE L. Hypertension is a risk factor for fractures. Calcif Tissue Int. 2009;84(2):103-111. [29] BONUCCI E, BALLANTI P. Osteoporosis-bone remodeling and animal models. Toxicol Pathol. 2014;42(6):957-969. [30] PEETERS G, VAN SCHOOR NM, LIPS P. Fall risk: the clinical relevance of falls and how to integrate fall risk with fracture risk. Best Pract Res Clin Rheumatol. 2009;23(6):797-804. [31] MAUREL DB, BOISSEAU N, BENHAMOU CL, et al. Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int. 2012;23(1): 1-16. [32] BOTOLIN S, FAUGERE MC, MALLUCHE H, et al. Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology. 2005;146(8):3622-3631. [33] SCHWARTZ AV, SELLMEYER DE, ENSRUD KE, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86(1):32-38. [34] ZHANG ZL, YANG JS, HAO DJ, et al. Risk Factors for New Vertebral Fracture After Percutaneous Vertebroplasty for Osteoporotic Vertebral Compression Fractures. Clin Interv Aging. 2021;16:1193-1200. [35] FROTZLER A, CHEIKH-SARRAF B, POURTEHRANI M, et al. Long-bone fractures in persons with spinal cord injury. Spinal Cord. 2015;53(9): 701-704. [36] YAN J, LIAO Z, YU Y. Finite element analysis of dynamic changes in spinal mechanics of osteoporotic lumbar fracture. Eur J Med Res. 2022;27(1):142. [37] KIM JE, YOO HS, CHOI DJ, et al. Comparison of Minimal Invasive Versus Biportal Endoscopic Transforaminal Lumbar Interbody Fusion for Single-level Lumbar Disease. Clin Spine Surg. 2021;34(2):E64-E71. [38] 廖芝富,匡中强,曲诗言,等.经皮椎体成形术后邻近椎体继发骨折危险因素分析[J].中国骨与关节杂志,2023,12(4):296-301. [39] 李文乐,王浩胜,宁丽俊,等.经皮椎体成形术后新发椎体压缩骨折临床预测模型的建立与验证[J].中国骨质疏松杂志,2021, 27(12):1804-1809. [40] ZUO XH, ZHU XP, BAO HG, et al. Network meta-analysis of percutaneous vertebroplasty, percutaneous kyphoplasty, nerve block, and conservative treatment for nonsurgery options of acute/subacute and chronic osteoporotic vertebral compression fractures (OVCFs) in short-term and long-term effects. Medicine (Baltimore). 2018;97(29):e11544. [41] MIGLIORINI F, MAFFULLI N, SPIEZIA F, et al. Biomarkers as therapy monitoring for postmenopausal osteoporosis: a systematic review. J Orthop Surg Res. 2021;16(1):318. [42] MITTALHENKLE A, GILLEN DL, STEHMAN-BREEN CO. Increased risk of mortality associated with hip fracture in the dialysis population. Am J Kidney Dis. 2004;44(4):672-679. [43] NICKOLAS TL, MCMAHON DJ, SHANE E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol. 2006;17(11):3223-3232. [44] 袁群生,李雪梅.2017年KDIGO关于慢性肾脏病矿物质及骨异常临床实践指南更新与解读[J].协和医学杂志,2018,9(3):213-218. 45] MILLER PD, ADACHI JD, ALBERGARIA BH, et al. Efficacy and Safety of Romosozumab Among Postmenopausal Women With Osteoporosis and Mild-to-Moderate Chronic Kidney Disease. J Bone Miner Res. 2022;37(8):1437-1445. [46] HSU S, BANSAL N, DENBURG M, et al. Risk factors for hip and vertebral fractures in chronic kidney disease: the CRIC study. J Bone Miner Res. 2024;39(4):433-442. [47] BOVER J, GÓMEZ-ALONSO C, CASADO E, et al. Osteoporosis management in patients with chronic kidney disease (ERCOS Study): A challenge in nephrological care. Nefrologia (Engl Ed). 2024;44(2): 241-250. [48] KUAN V, DENAXAS S, PATALAY P, et al. Identifying and visualising multimorbidity and comorbidity patterns in patients in the English National Health Service: a population-based study. Lancet Digit Health. 2023;5(1):e16-e27. [49] SABAGHIAN T, DELKASH P, RAHMANNIA M, et al. Efficacy and Safety of Anti-Osteoporotic Agents across CKD Stages: A Meta-Analysis of Randomized Clinical Trials. Kidney Blood Press Res. 2024;49(1): 581-587. [50] GOTO NA, WESTSTRATE ACG, OOSTERLAAN FM, et al. The association between chronic kidney disease, falls, and fractures: a systematic review and meta-analysis. Osteoporos Int. 2020;31(1):13-29. [51] PIMENTEL A, BOVER J, ELDER G, et al. The Use of Imaging Techniques in Chronic Kidney Disease-Mineral and Bone Disorders (CKD-MBD)-A Systematic Review. Diagnostics (Basel). 2021;11(5):772. [52] KIM CS, CHOI HS, BAE EH, et al. Weight change and fracture risk in patients with diabetic kidney disease: A nationwide population-based study. Front Med (Lausanne). 2022;9:912152. |
[1] | Yang Peng, Xu Chenghan, Zhou Yingjie, Chai Xubin, Zhuo Hanjie, Li Lin, Shi Jinyu. A meta-analysis of risk factors for residual back pain after vertebral augmentation for osteoporotic vertebral compression fractures [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(3): 731-739. |
[2] | Zhang Junwei, Chen Lingling, Ma Zhenyuan, Nie Weizhi, Li Chaohui, Wang Haitao, Duan Laibao, Hou Jinyong, Bi Hongzheng. Three-dimensional displacement and risk factors of midshaft clavicle fractures treated with titanium elastic intramedullary nailing [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(2): 269-277. |
[3] |
Zhao Wensheng, Li Xiaolin, Peng Changhua, Deng Jia, Sheng Hao, Chen Hongwei, Zhang Chaoju, He Chuan.
Gut microbiota and osteoporotic fractures #br#
#br#
[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1296-1304.
|
[4] | Zhang Lichuang, Yang Wen, Ding Guangjiang, Li Peikun, Xiao Zhongyu, Chen Ying, Fang Xue, Zhang Teng. Dispersion effect of bone cement after vertebroplasty using individualized unilateral external pedicle approach and bilateral pedicle approach [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 800-808. |
[5] | Yan Jinlian, Xu Zhengquan, Wei Renjie, Wang Yehua. Hip joint function recovery and prediction model construction after proximal femoral nail antirotation for intertrochanteric fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(33): 7189-7195. |
[6] | Zhao Xingcheng, Wang Jun, Lu Ming. Repair strategies for nonunion in old osteoporotic vertebral compression fractures: a case analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 538-546. |
[7] | Chen Hao, Wu Pigen, Teng Jiaqi, Zhang Liang, Feng Xinmin. Analysis of risk factors for lumbar fascial edema in patients with osteoporotic vertebral compression fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(29): 6174-6179. |
[8] | Li Tangbo, Zhang Nan, Hao Guobing, Liu Kun, Qiao Lin, Zhu Zexing, Song Diyu. Bone cement injection during percutaneous curved vertebroplasty in treatment of osteoporotic vertebral compression fractures in the upper 1/3 of the vertebral body [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(28): 5977-5984. |
[9] | Tu Zesong, Xu Daxing, Luo Hongbin, Wang Yusheng, Feng Xinglun, Peng Zhonghua, Du Shaolong. Construction of a risk prediction model for failure of proximal femoral nail antirotation fixation in intertrochanteric fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(27): 5845-5853. |
[10] | Wu Yonghao, Zhu Shuaiqi, Li Yuqiao, Zhang Chenfei, Xia Weiwei, Zhu Zhenqi, Wang Kaifeng. Correction effect of local kyphosis of the spine after percutaneous kyphoplasty in super-aging patients with vertebral compression fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(27): 5854-5861. |
[11] | Li Jiahong, Lin Shu, Tang Liuyi, Hu Jiang, Yu Yang, Zhang Wei. Patient experience of robot-assisted percutaneous kyphoplasty with bone cement injection into injured vertebrae under local anesthesia [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(22): 4647-4652. |
[12] | Fang Wei, Huang Xinghua, Qu Bo, Yang Hongsheng. Effect of differences in vertebral cortical bone reinforcement on biomechanics of osteoporotic vertebral compression fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(21): 4430-4438. |
[13] | Chen Xiaoguang, Liu Fuquan, Zhang Deguang. Cause and treatment strategy of bone cement leakage after percutaneous vertebroplasty for osteoporotic vertebral compression fractures [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(16): 3311-3317. |
[14] | Zheng Zewei, Ye Kaijing, Zhang Kuo, Zhao Qinghua, Chen Xiutian, Jiang Yulai, Yi Yanzi, Zhang Qingwen. Hypoproteinemia after total hip arthroplasty: risk factors and nomogram prediction model establishment [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(15): 3147-3152. |
[15] | Xu Yuguo, Huang Jiahu, Wang Qing, Xu Shuang, Wang Song. L5 osteoporotic vertebral compression fractures treated through “O” point approach and traditional unilateral puncture approach [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(15): 3165-3170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||