Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (20): 4295-4304.doi: 10.12307/2025.717
Previous Articles Next Articles
Yang Wenjing1, 2, Gegentana1, 2
Received:
2024-08-26
Accepted:
2024-10-16
Online:
2025-07-18
Published:
2024-12-23
Contact:
Gegentana, Professor, MD, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China; School of Stomatology, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
About author:
Yang Wenjing, Master’s candidate, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China; School of Stomatology, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
CLC Number:
Yang Wenjing, Gegentana. Finite element analysis of the mechanical properties of the tooth in endodontic root canal treatment for endodontic periapical disease[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(20): 4295-4304.
2.1 开髓洞型的有限元分析 在根管治疗中,开髓洞型设计是实现预期治疗效果的前提,最大程度地保留剩余牙体组织对于根管治疗后牙齿长期存留极为重要。传统开髓洞型重视建立根管直线通路,强调揭全髓室顶并完全暴露髓室底。为了减少牙体组织的损失,近年来以保存颈周牙本质为核心的微创开髓理念应运而生[19-21],强调在阻断已有病变发生及发展的基础上,通过锥形束CT定位根管数量及位置[22-23],极大限度地保留健康的牙体组织尤其是颈周牙本质,必要时甚至保留部分髓室顶,从而提高患牙的远期疗效[24]。有研究表明,相较于传统开髓洞型而言,直线通路微创开髓洞型在冠部、颈部及根尖区均可有效降低根管治疗后患牙的应力峰值[6,25-26]。 常见的微创开髓洞型包括保守(一孔)微创开髓洞型、根管口导向(两孔)微创开髓洞型、超保守开髓洞型、改良开髓洞型等[20,27],其中保守微创开髓洞型更能减少冠部及颈部应力集中,延长患牙寿命。LIU等[28]对上颌中切牙不同开髓通路进行有限元分析,发现保守洞型最大限度地减少了颈周牙本质的去除,保护了患牙的机械行为,并且将开髓口移至切缘还可以提高切牙的抗折裂性。?ZYüREK等[29]利用有限元分析法研究开髓方式对前磨牙抗折能力的影响,结果表明,保守(一孔)微创开髓模型能减少牙齿在冠部及颈部的应力集中,在不影响根管治疗效果的同时增加患牙治疗后的抗折强度,延长患牙的使用寿命。ZHANG等[30]采用有限元分析发现,保守型开髓洞型能有效减小上颌第一磨牙牙颈部的应力集中趋势及应力峰值。ALLEN等[31]对下颌第一磨牙的有限元分析发现,保守型开髓洞型经过牙体预备后颈部最大应力比传统型小,牙折裂的风险减小。此外,黄雨婷[9]还发现微创开髓的前磨牙与完整牙一样,折断时一般为牙尖的劈裂,而传统开髓后前磨牙的劈裂纹一般会延伸至釉牙骨质界以下甚至到达根尖,这种情况在临床很难进行修复,大多只能拔除患牙[32]。以双根管的上颌第一前磨牙为例,不同的开髓洞型设计要点、优势和不足见表2[6]。"
综上所述,在有效控制根管内感染、满足临床操作需要的前提下,优先选择微创开髓洞型可有效提高牙髓根尖周病患牙根管治疗后的抗折强度,有利于满足患牙后期修复及长期行使功能的需要。超保守微创开髓洞型尽管保留下了更多牙体组织,但同时使临床医生的操作空间及视野局限,增加了根管治疗难度。 2.2 根管预备的有限元分析 根管预备作为根管治疗的关键环节,往往采用专用的器械和规范的方法对感染根管进行疏通、清理和成形,并使用药物对根管进行消毒,以达到控制感染、消除炎症、为根管充填提供充足空间的目的。目前临床常用手用器械结合镍钛器械进行预备,镍钛器械具有优良的柔韧性和弹性,可以减少根管壁台阶及侧穿等风险,然而大锥度器械预备过程中势必会切削部分健康牙体组织,导致根管壁抗折能力减弱,当根管壁过度预备后受力超过牙本质的最大可承受应力时,会导致牙根纵裂的发生[33-34]。微创牙髓治疗理念提倡根管扩大和成形过程中尽可能少去除牙体组织,保留颈周牙本质,同时使用小锥度镍钛器械围绕根管壁提刷,尽量保留中上段牙本质结构,以增加根管抗力[21,35-36]。 与大锥度镍钛器械相比,小锥度镍钛器械可以最大程度地保留颈周牙本质,增强患牙抗折强度。陈昭慧[37]对上颌前磨牙不同根管预备程度下应力特性进行有限元分析发现,在完成开髓、预备并充填后垂直加载应力时,0635型号预备组颈周牙本质所受最大应力值显著小于0720型号预备组和0725型号预备组,表明应用相对小锥度的器械预备更适合保存前磨牙牙体抗力。YUAN等[38]利用有限元法分析微创治疗与常规直线通路治疗对牙齿生物力学影响的研究也发现,与直线通路相比,小锥度根管预备能保留更多的颈周牙本质、降低牙颈部应力,保证了颈周牙本质的抗折能力。 然而并非锥度越小抗折强度越大。有学者研究不同锥度镍钛根管锉对下颌前磨牙根管治疗中牙断裂强度的影响[39],结果显示:在相同受力情况下,有限元法分析0.04锥度镍钛锉处理过牙根管上的等效应力比0.06锥度的要大,体外实验中0.04锥度镍钛锉处理过的根管平均断裂载荷要比0.06锥度的小,这表明0.06锥度镍钛锉预备过的根管在断裂前能够承受更大的载荷,即0.06锥度镍钛锉根管预备后根管抗折强度相对更强。因此,对于正常大小的前磨牙,使用0.06锥度镍钛根管锉对根管进行处理,得到的效果比使用0.04锥度镍钛锉更好。 根管机械及化学冲洗作为根管预备中的重要步骤,可以清洁根管内的细菌和残留物,为根管的填充和封闭创造良好条件[40],然而根管化学预备作用时间过长或浓度过高也会降低根管的抗折能力。有研究证实,高浓度的次氯酸钠和乙二胺四乙酸作用时间过长可导致牙本质的机械性能改变,并且降低牙齿的抗折能力[41]。XU等[42]研究次氯酸钠浓度对牙根牙本质力学和结构特性的影响,发现次氯酸钠对根管附近的牙本质小管内表面造成破坏,从而降低了牙根的机械强度,并且次氯酸钠浓度越高损伤越大。因此,临床中使用次氯酸钠与乙二胺四乙酸联用时要注意时间及浓度的把控,次氯酸钠浓度以2.5%为宜[43]。 综上所述,在有效控制感染及根管成形的基础上,根管机械预备使用0.06锥度镍钛根管锉对根管进行处理的效果更好,同时在根管扩大过程中尽可能保留颈周牙本质以增加根管抗力;根管化学预备要注意冲洗消毒药物的浓度及时间控制。 2.3 根管充填的有限元分析 根管充填是用特定材料严密填充经过预备和消毒的根管系统,阻止细菌再次侵入,促进根尖周病变的愈合,并为牙齿提供结构上的支持。目前临床常见的根管充填方式包括冷牙胶侧向加压法、热牙胶垂直加压法及单尖法。有学者通过体外实验证实,使用3种根管方法充填后的根管均比预备后牙根的抗折性能高[44]。也有实验表明,根管充填后的牙根比未充填的牙根具有更高的折裂风险[45-46],分析原因可能是在严密充填根管过程中势必会引入一定的压力,并且根管充填时还需对根管灌注封闭剂,导致根管壁上产生微裂纹及微折裂并向根管表面及根尖区传递[47],承受咬合力或施加过度压力后裂纹继续扩展,最终导致牙根纵裂,预后较差[48]。 通过对3种充填方式后根管裂纹的对比发现,单尖法充填后根管的抗折强度最高。林男男[49]利用有限元分析法结合体外实验探究不同根管充填方法对椭圆形根管牙根力学行为的影响,结果显示:在椭圆形根管中,单尖充填法具有最高的抗折力,其次为热牙胶垂直加压充填法,冷牙胶侧向加压法充填后的牙根抗折力最差,并且单尖法充填后的牙根高应力集中区域面积少于热牙胶垂直加压充填和冷侧压充填。当与单尖法技术一起使用以填充单根管牙的根尖1/3时,生物陶瓷硅酸钙类封闭剂 EndoSequence BCAH Plus更有效,可以提高根管填充质量,从而提高根管治疗的长期成功率[50-51]。 根管充填糊剂常作为根管充填的辅助药物,起到严密封闭根管、促进根尖周组织愈合的作用。临床常见的根管充填糊剂包括三氧化矿物凝聚体MTA、环氧树脂类AH Plus及硅酸钙类如iRoot SP、BioRoot RCS及EndoSequence BCAH Plus等[52],其中硅酸钙类根充糊剂在抗折强度方面有较大的优势。BELLI等[53]通过对前磨牙根管充填的有限元分析发现,应用MTA封闭会导致根管产生更大的应力。SMRAN等[47]通过对下颌前磨牙根管充填糊剂AH Plus和BioRoot RCS进行有限元分析研究发现,填充BioRoot RCS的牙齿模型中观察到更均匀的应力分布,并且其最大应力值低于AH Plus组,分析原因可能是硅酸钙类糊剂比环氧树脂类糊剂具有更高的弹性模量,可以有效地将应力分布在自身结构中。 综上所述,随着根充糊剂性能的提高及生物陶瓷材料的发展,硅酸钙类根管充填糊剂辅助单尖法进行根管充填,有望以简单、操作便捷、耗时少、效率极高、抗折性能强等优点逐渐进入临床操作,并被越来越多的临床医生认可。 2.4 修复方式及修复材料的有限元分析 冠方修复作为根管治疗的最后一步在患牙保存中至关重要[54-55]。有研究表明,牙体组织损失量与患牙的抗折强度直接相关[56-58]。牙冠修复后可能会有效平衡根尖周围骨缺损引起的应力集中。临床中修复方式的选择需综合考虑牙体缺损类型、剩余牙体组织的量及不同材料的特性等,常见的修复方式包括树脂直接充填、嵌体或高嵌体修复及全冠修复等。 2.4.1 复合树脂直接充填 复合树脂直接充填的临床操作高效快捷,在恢复患牙抗力和美观性方面具有优势[59],但采用树脂修复的适应证相对严格,如前牙非应力承受区选用抛光性能和表面光滑性能优异的微填料复合树脂,而后牙则选择力学性能优良的混合填料型或超微填料型复合树脂[60]。KIRMALI等[61]指出,复合树脂修复体被认为是修复根管治疗后有病变牙齿的首选治疗选择。近年随着复合树脂直接修复材料的发展,复合树脂的适用范围也不断增大[62],因此,在增强患牙抗力方面需综合考虑不同牙体缺损类型、洞缘角度设计及不同树脂材料的选择等。陈智等[63]认为对于有完整牙体壁且咬合正常的非基牙来说,复合树脂直接充填适合前牙各类型及后牙的Ⅰ类洞及Ⅱ类洞缺损。 后牙不同缺损类型采用树脂充填修复时抗力不同,其中近中牙合面洞的应力值最低。MUSTAFFA等[64]在牙髓治疗前磨牙后树脂复合修复体中应力模式的有限元分析研究中建立了3种类型窝洞,即Ⅰ类牙合面洞、Ⅱ类近中牙合面洞及Ⅱ类近中中央远中牙合面洞,结果显示:近中牙合面洞修复的牙齿复合体应力值低于牙合面洞修复和近中牙合面远中洞修复,分析原因可能是因为与牙合面洞修复体相比,近中牙合面洞修复体的C因子略低,这使得结构中的应力分布看起来更均匀;而近中牙合面远中洞修复体的C因子最低,但产生的应力值较高,这可能是由于冠部牙体组织的显著损失使得其中应力的消散受到损害,并且所产生的应力集中在剩余的牙体组织中。因此,经过广泛修复程序的牙髓治疗患牙中会存在显著的应力集中和更大的牙尖移动,这也增加了牙齿断裂的风险,在临床操作中应尽量减少不必要的牙体组织去除。 洞缘角度设计也会影响修复体材料的抗力,其中洞缘90°角更有利于提高患牙修复后的抗折强度。陈红星等[65]分析了不同洞缘角磨牙Ⅰ类洞复合树脂充填的有限元应力分布,结果显示:洞缘设计为90°角时的修复模型总体及牙釉质最大应力均小于120°角和135°角。因此从减少剩余牙体组织应力的角度来看,90°的洞缘角即无釉质斜面预备是一种较为理想的窝洞预备方式,可以减小牙体组织折裂的风险。 在树脂材料性能方面,材料弹性模量越大传递到牙体组织的应力越小[66],材料弹性模量越接近牙体组织,修复后患牙的抗折强度越大。CARDOSO等[67]对两种不同树脂材料的残余收缩应力进行有限元分析,发现材料弹性模量越高产生的应力越大。YAMAGUCHI等[68]通过改变填料影响树脂弹性模量的研究发现,在宏观尺度上,树脂填料直径的减小导致树脂弹性模量和抗压强度的增加;在纳米尺度上,填料直径的减小导致最大主应变的最大值减小;当硅烷耦合比减小时,树脂弹性模量和抗压强度会降低。因此临床中选择树脂材料时,材料的弹性模量需与剩余牙体组织相接近,在树脂材料的选择中可以参考树脂成分,适当选择树脂填料的直径及硅烷耦合比等,以期使树脂充填后的患牙抗折强度达到最佳状态。 2.4.2 嵌体及高嵌体 随着椅旁计算机辅助设计和计算机辅助制造技术的广泛应用和不断提升,嵌体修复具备了节约患者诊疗时间、更好地恢复邻面形态及美观性等优点,然而,嵌体修复相对于直接充填修复来说磨除的牙体组织更多,需综合抗力形设计、倒凹设计及不同材料的选择来增加患牙抗折强度。陈智等[63]认为后牙Ⅱ类洞缺损剩余二至三壁时亦可选择嵌体修复。 嵌体的抗力形包括厚度及宽度的设计。有学者表示,从嵌体的厚度来看,2,3 mm的嵌体相较于1 mm而言应力集中明显改善;从嵌体的宽度来看,宽度越小,嵌体内表面折裂及脱粘接的概率越大,但嵌体宽度为4 mm时,修复体及剩余牙体组织的应力峰值显著增高,因此嵌体宽度要适宜,当宽度超过4 mm时建议使用覆盖牙尖的高嵌体进行修复[69]。 嵌体主要覆盖牙体的咬合面,而高嵌体作为嵌体的一种覆盖范围更广,不仅包括咬合面,还会延伸到牙尖斜面甚至一部分的颊舌面,牙尖覆盖厚度在3 mm时抗折力最大。佘雅鹄等[70]通过有限元法分析牙尖覆盖厚度对全瓷高嵌体修复前磨牙应力分布影响,结果显示:对于修复体而言,在牙尖覆盖厚度为2 mm时,高嵌体局部过于薄弱易导致应力集中;在牙尖覆盖厚度3 mm及4 mm时,高嵌体局部应力峰值相对较低;对于粘接层而言,减小牙尖覆盖厚度可减少粘接剂层边缘的应力,有效降低高嵌体松动脱落的风险;对于剩余牙本质而言,垂直及斜向加载下最大主应力峰值均位于洞底,并随牙尖覆盖厚度的增加而轻微减小。因此,高嵌体牙尖覆盖厚度应保证约3 mm以得到足够的抗折强度及牙本质支持。 当髓室侧壁及龋洞侧壁存在倒凹时,保留倒凹可适当增强患牙抗折能力。康小翠等[71]利用有限元分析传统外展预备和留有倒凹的微创预备两种预备方式对嵌体修复的力学影响,结果表示:相较于传统预备削除洞壁内倒凹区而言,留有倒凹微创预备而不进行传统削除倒凹预备,最终修复体和剩余牙体组织的抗折裂效果更佳;对于玻璃离子、流体树脂及粘接剂等不同的倒凹填充材料而言,流体树脂的流动性好、密封性高,可以提供较大的强度,基本满足临床的需要。因此,当倒凹冠方有足够的牙本质支撑时,对患牙进行留有倒凹的微创预备并使用流体树脂充填倒凹,是防止修复体和剩余牙体组织折裂的最佳选择。 目前临床常用嵌体及高嵌体材料主要为加强型复合树脂材料、玻璃陶瓷及树脂-陶瓷复合材料,经过对各种材料的抗折能力进行对比研究发现,树脂-陶瓷复合材料在抗折强度方面表现出较明显的优势。LAI等[72]应用有限元分析法比较树脂-陶瓷复合材料及玻璃陶瓷材料在抗折强度方面的差异,结果显示树脂-陶瓷高嵌体的抗折能力强于二硅酸锂玻璃陶瓷高嵌体。张扬[73]通过对比不同材料高嵌体修复的差异发现,树脂-陶瓷复合材料更有利于增强上颌第一前磨牙高嵌体修复后牙体的抗折裂能力。因此,在修复材料的选择上,与牙体组织弹性模量更接近的树脂-陶瓷复合材料更有利于增强剩余牙体组织的抗折强度。有限元分析在嵌体及高嵌体修复领域的应用时间轴,见表3。 "
2.4.3 全冠 全冠修复作为根管治疗后的主要修复方式之一,在保护大面积缺损患牙、改善美观及恢复功能等方面表现优异[74]。然而,全冠修复需磨除更多的剩余牙体组织,导致患牙抗力减弱,其颈缘与水门汀粘接层也易出现剥离或者微渗漏的情况,导致修复失败。因此,临床中选择全冠修复时需综合修复体的边缘形式、修复体与粘接层的应力分布及不同材料的选择,以增强剩余牙体组织抗折强度。 全冠的边缘形式设计对分散患牙应力、增强修复体稳定性至关重要,后牙肩台处边缘形式包括内锐角肩台边缘、内钝角肩台边缘及凹槽边缘,其中内钝角肩台边缘是最佳选择。季梦真等[75]对上颌第一磨牙烤瓷冠修复进行有限元分析,发现修复后的基牙局部应力主要分布在颈缘肩台处,与CHEN等[76]的研究结果一致。王晓晨等[77]对后牙全锆冠龈边缘预备形式的应力分布总结发现,内锐角肩台边缘应力分布最为集中,而内钝角肩台边缘应力值最小,内钝角肩台边缘和凹槽边缘均表现出有利的几何形状,可改善后牙全冠的力学性能,最大限度地减少咬合应力。 健康牙釉质的弹性模量从最外层向釉牙骨质界逐层递减[78],而单层全瓷冠弹性模量均一,双层全瓷冠饰瓷与核瓷、核瓷与牙本质间弹性模量差异较大,易产生应力集中,因此应改善水门汀粘接层的应力分布,使不同材料间的弹性模量顺利过渡,从而提高粘接强度,降低应力集中的发生。王震等[79]通过对全冠修复体进行仿生优化设计与有限元分析,结果显示将非均一的弹性模量分布引入全冠修复体可能提高其力学性能,并且相邻层次间材料的弹性模量过渡越平缓、界面处的应力集中就越少,在全冠优化设计时应以最大限度地减少全冠和水门汀粘接层之间的剪切应力峰值为优化目标;此外,单层全冠弹性模量越高、粘接层的应力集中越大,而不均一弹性模量的双层及8层结构全冠可以明显降低粘接层的剪切力峰值,提示多层结构全冠的弹性模量分布效果更佳。 全冠材料包括金属全冠、烤瓷冠及全瓷冠等,目前临床中全瓷冠应用较多,包括玻璃陶瓷及氧化锆陶瓷,氧化锆表现出更优异的力学性能。周明德[80]利用有限元法分析不同瓷材料种类对前牙单层瓷全冠修复体应力分布影响,结果显示氧化锆材料较玻璃陶瓷材料的弹性模量更高,氧化锆组冠部应力峰值明显大于玻璃陶瓷冠组,然而氧化锆冠组基牙预备体部位应力小于玻璃陶瓷冠组,并且应力分布更加均匀。因此,当剩余牙体组织较少需要增强患牙强度时,氧化锆冠展现出更加优异的力学性能。近年来高分子材料迅猛发展,高分子聚合物聚醚醚酮材料被广泛应用于种植及口腔颌面外科[81-83],目前正逐渐尝试作为全冠材料应用于临床[84]。"
[1] 肖莎,高承志,周冬平.全瓷高嵌体修复前磨牙缺损的近、远期效果及对牙功能的影响[J].上海口腔医学,2022,31(3):300-304. [2] SILVA E, DE-DEUS G, SOUZA EM, et al. Present status and future directions - Minimal endodontic access cavities. Int Endod J. 2022; 55 Suppl 3:531-587. [3] ESKIBAĞLAR M, ERDEM S, KARAAĞAÇ ESKIBAĞLAR B, et al. Evaluation of the forces applied by rubber dam clamps on mandibular first molar teeth with different endodontic access cavities: a 3D FEA study. PeerJ. 2024;12:e17921. [4] 禹雯怡,余海波,陈娇,等.根管治疗相关的下牙槽神经损伤及治疗流程研究进展[J].临床口腔医学杂志,2024,40(4):248-250. [5] GALANI M, TEWARI S, SANGWAN P, et al. Comparative Evaluation of Postoperative Pain and Success Rate after Pulpotomy and Root Canal Treatment in Cariously Exposed Mature Permanent Molars: A Randomized Controlled Trial. J Endod. 2017l43(12):1953-1962. [6] 高羽轩,张岚,周学东,等.直线通路微创开髓洞型对上颌第一前磨牙力学性能影响的有限元分析 [J].中华口腔医学杂志,2022, 57(1):52-59. [7] UMA MAHESWARI G, YAMINI B, DHANDAPANI VE, et al. Methylenetetrahydrofolate reductase polymorphisms in dental caries-induced pulp inflammation and regeneration of dentine-pulp complex: Future perspectives. Saudi Dent J. 2023;35(8):1029-1038. [8] SILVA E, ROVER G, BELLADONNA FG, et al. Impact of contracted endodontic cavities on fracture resistance of endodontically treated teeth: a systematic review of in vitro studies. Clin Oral Investig. 2018; 22(1):109-118. [9] 黄雨婷.有限元分析法研究开髓方式对前磨牙及磨牙抗折能力的影响[D].广州:广州医科大学,2019. [10] CERVINO G, FIORILLO L, ARZUKANYAN AV, et al. Application of bioengineering devices for stress evaluation in dentistry: the last 10 years FEM parametric analysis of outcomes and current trends. Minerva Stomatol. 2020;69(1):55-62. [11] MADFA AA. Effect of Dental Glass Fiber Posts on Root Stresses and Fracture Behavior of Endodontically Treated Maxillary Central Incisors: A Finite Element Analysis Study. Cureus. 2023;15(8):e43056. [12] 王怀升,刘锐,宋振宇,等.3D打印钛合金下颌骨正中联合骨折接骨板的应力分布及静态力学分析 [J].口腔医学研究,2024,40(6): 519-524. [13] 徐良伟,田锡天,陈林,等.不同弹性模量计算机辅助设计和计算机辅助制造桩核材料的应力分析 [J].中国组织工程研究,2025, 29(10):2061-2066. [14] 廖莹,黄怡.微创修复用于短冠磨牙的三维有限元非线性应力分析[J].口腔医学研究,2023,39(11):988-994. [15] ASLAN T, ESIM E, ÜSTüN Y. Finite element evaluation of dentin stress changes following different endodontic surgical approaches. Odontology. 2024;112(3):798-810. [16] TRIBST JPM, LO GIUDICE R, DOS SANTOS AFC, et al. Lithium Disilicate Ceramic Endocrown Biomechanical Response According to Different Pulp Chamber Extension Angles and Filling Materials. Materials (Basel). 2021;14(5):1307. [17] SANTOS PANTALEÓN D, TRIBST JPM, GARCíA-GODOY F. Influence of size-anatomy of the maxillary central incisor on the biomechanical performance of post-and-core restoration with different ferrule heights. J Adv Prosthodont. 2024;16(2):77-90. [18] KHARBOUTLY NA, ALLAF M, KANOUT S. Three-Dimensional Finite Element Study of Endodontically Treated Maxillary Central Incisors Restored Using Different Post and Crown Materials. Cureus. 2023; 15(1):e33778. [19] 汪牡丹,宋东哲,黄定明.开髓洞型对患牙根管治疗术后抗折性能影响的研究进展[J].国际口腔医学杂志,2023,50(2):186-194. [20] WANG X, WANG D, WANG YR, et al. Effect of access cavities on the biomechanics of mandibular molars: a finite element analysis. BMC Oral Health. 2023;23(1):196. [21] AAZZOUZI-RAISS K, RAMíREZ-MUÑOZ A, MENDEZ SP, et al. Effects of Conservative Access and Apical Enlargement on Shaping and Dentin Preservation with Traditional and Modern Instruments: A Micro-computed Tomographic Study. J Endod. 2023;49(4):430-437. [22] 徐西红,于英杰,冯颖.显微超声技术结合CBCT诊治恒牙变异根管的临床疗效观察[J].中国美容医学,2023,32(12):149-153. [23] 彭华刚,龚乃胜,徐济群.显微超声技术结合锥形束CT或X线片治疗牙髓钙化效果对比[J].重庆医学,2023,52(18):2785-2788. [24] SILVA E, PINTO KP, FERREIRA CM, et al. Current status on minimal access cavity preparations: a critical analysis and a proposal for a universal nomenclature. Int Endod J. 2020;53(12):1618-1635. [25] FRANCO ABG, FRANCO AG, DE CARVALHO GAP, et al. Influence of conservative endodontic access and the osteoporotic bone on the restoration material adhesive behavior through finite element analysis. J Mater Sci Mater Med. 2020;31(4):39. [26] SABER SM, HAYATY DM, NAWAR NN, et al. The Effect of Access Cavity Designs and Sizes of Root Canal Preparations on the Biomechanical Behavior of an Endodontically Treated Mandibular First Molar: A Finite Element Analysis. J Endod. 2020;46(11):1675-1681. [27] 纪寅飞,张岚,黄定明.微创髓腔通路对根管治疗过程的影响[J].国际口腔医学杂志,2024,51(5): 558-564. [28] LIU Y, HUANG X, KE H, et al. Influence of Access Cavities on Maxillary Central Incisor Fracture Resistance: Finite Element Study. Int Dent J, 2024:S0020-6539(24)00121-7. doi: 10.1016/j.identj.2024.04.017. [29] ÖZYÜREK T, USLU G, ARıCAN B, et al. Influence of endodontic access cavity design on mechanical properties of a first mandibular premolar tooth: a finite element analysis study. Clin Oral Investig. 2024;28(8):433. [30] ZHANG Y, LIU Y, SHE Y, et al. The Effect of Endodontic Access Cavities on Fracture Resistance of First Maxillary Molar Using the Extended Finite Element Method. J Endod. 2019;45(3):316-321. [31] ALLEN C, MEYER CA, YOO E, et al. Stress distribution in a tooth treated through minimally invasive access compared to one treated through traditional access: A finite element analysis study. J Conserv Dent. 2018;21(5):505-509. [32] PRADEEPKUMAR AR, SHEMESH H, JOTHILATHA S, et al. Diagnosis of Vertical Root Fractures in Restored Endodontically Treated Teeth: A Time-dependent Retrospective Cohort Study. J Endod. 2016;42(8): 1175-1180. [33] 申煜荣,乃仁桐,赵玲,等.NIC X-FILE和DENCO Pre-Shaper镍钛器械对模拟弯曲根管成形的影响 [J].中国组织工程研究,2024,28(3) 387-391. [34] 苗晖,张子睿,吴丽更.牙根纵裂的研究进展[J].现代口腔医学杂志,2024,38(2):150-153+149. [35] 蒋宏伟.微创牙髓治疗的理论与实践[J].中华口腔医学杂志,2016, 51(8):460-464. [36] CHEN S, HONG X, YE Z, et al. The effect of root canal treatment and post-crown restorations on stress distribution in teeth with periapical periodontitis: a finite element analysis. BMC Oral Health. 2023;23(1):973. [37] 陈昭慧.上颌前磨牙不同开髓方式和根管预备程度下应力特性的有限元分析[D].济南:山东大学,2020. [38] YUAN K, NIU C, XIE Q, et al. Comparative evaluation of the impact of minimally invasive preparation vs. conventional straight-line preparation on tooth biomechanics: a finite element analysis. Eur J Oral Sci. 2016;124(6):591-596. [39] 邱晓键,肖善社,谷雪莲,等.不同锥度根管锉对根管壁抗折强度的影响[J].上海口腔医学,2020,29(5):471-475. [40] 李梦雅,卢妍君,许庆安.根管冲洗技术和冲洗剂研究进展[J].中国实用口腔科杂志,2024,17(2):247-252. [41] 陈昭慧,陈悦,王效英.三维有限元在微创牙髓治疗研究中的应用进展[J].临床口腔医学杂志,2019,35(5):316-318. [42] XU H, YE Z, ZHANG A, et al. Effects of concentration of sodium hypochlorite as an endodontic irrigant on the mechanical and structural properties of root dentine: A laboratory study. Int Endod J. 2022;55(10):1091-1102.
[43] 李转转,格根塔娜.牙髓血运重建术根管冲洗消毒药物的研究进展[J].国际口腔医学杂志,2022,49(5):569-577. [44] PATIL P, BANGA KS, PAWAR AM, et al. Influence of root canal obturation using gutta-percha with three different sealers on root reinforcement of endodontically treated teeth. An in vitro comparative study of mandibular incisors. J Conserv Dent. 2017;20(4):241-244. [45] PILO R, METZGER Z, BROSH T. Effect of root morphology on the susceptibility of endodontically treated teeth to vertical root fracture: An ex-vivo model. J Mech Behav Biomed Mater. 2017;69:267-274. [46] CHAI H, TAMSE A. Vertical Root Fracture in Buccal Roots of Bifurcated Maxillary Premolars from Condensation of Gutta-percha. J Endod. 2018;44(7):1159-1163. [47] SMRAN A, ABDULLAH M, AHMAD NA, et al. Evaluation of stress distributions of calcium silicate-based root canal sealer in bulk or with main core material: A finite element analysis study. PLoS One. 2024;19(3):e0299552. [48] 陈词,王通,李慧影,等.预制裂纹的预备后椭圆形根管牙根有限元模型构建及分析[J].医用生物力学,2024,39(4):724-729. [49] 林男男.不同根管充填方法对椭圆形根管牙根力学行为的影响[D].青岛:青岛大学,2019. [50] ROIZENBLIT RN, SOARES FO, LOPES RT, et al. Root canal filling quality of mandibular molars with EndoSequence BC and AH Plus sealers: A micro-CT study. Aust Endod J. 2020;46(1):82-87. [51] BAŞER CAN ED, KELEŞ A, ASLAN B. Micro-CT evaluation of the quality of root fillings when using three root filling systems. Int Endod J. 2017;50(5):499-505. [52] PIRANI C, CAMILLERI J. Effectiveness of root canal filling materials and techniques for treatment of apical periodontitis: A systematic review. Int Endod J. 2023;56 Suppl 3:436-454. [53] BELLI S, ERASLAN O, ESKITASCIOGLU G. Effect of Root Filling on Stress Distribution in Premolars with Endodontic-Periodontal Lesion: A Finite Elemental Analysis Study. J Endod. 2016;42(1):150-155. [54] YANG J, HAN F, CHEN C, et al. Comparison of stress distribution between zirconia/alloy endocrown and CAD/CAM multi-piece zirconia post-crown: three-dimensional finite element analysis. Clin Oral Investig. 2022;26(7):5007-5017. [55] ORDINOLA-ZAPATA R, LIN F, NAGARKAR S, et al. A critical analysis of research methods and experimental models to study the load capacity and clinical behaviour of the root filled teeth. Int Endod J. 2022;55 Suppl 2(Suppl 2):471-494. [56] JIANG Q, HUANG Y, TU X, et al. Biomechanical Properties of First Maxillary Molars with Different Endodontic Cavities: A Finite Element Analysis. J Endod. 2018;44(8):1283-1288. [57] ELKHOLY MMA, NAWAR NN, HA WN, et al. Impact of Canal Taper and Access Cavity Design on the Life Span of an Endodontically Treated Mandibular Molar: A Finite Element Analysis. J Endod. 2021; 47(9):1472-1480. [58] BALLESTER B, GIRAUD T, AHMED HMA, et al. Current strategies for conservative endodontic access cavity preparation techniques-systematic review, meta-analysis, and decision-making protocol. Clin Oral Investig. 2021;25(11):6027-6044. [59] RODRIGUES MP, SOARES PBF, GOMES MAB, et al. Direct resin composite restoration of endodontically-treated permanent molars in adolescents: bite force and patient-specific finite element analysis. J Appl Oral Sci. 2020;28:e20190544. [60] 中华口腔医学会牙体牙髓病学专业委员会.复合树脂直接粘接修复操作规范的专家共识[J].中华口腔医学杂志,2019,54(9):618-622. [61] KIRMALI Ö, ICEN G, KURSAT CELIK H, et al. Evaluation of stress distribution on an endodontically treated maxillary central tooth with lesion restored with different crown materials: A finite element analysis. Heliyon. 2024;10(3):e25829. [62] 麦穗,韦曦,凌均棨.复合树脂充填材料的研发策略和进展[J].中华口腔医学杂志,2021,56(1): 51-56. [63] 陈智,陈彬文.根管治疗后牙体修复的治疗方案选择[J].华西口腔医学杂志,2015,33(2):115-120. [64] MUSTAFFA M, MARGHOUB A, SHAHRBAF S, et al. Evaluation of the Stress Pattern in the Resin-Based Composite Restoration of an Endodontically Treated Premolar Tooth: A Finite Element Analysis Study. J Int Dent Med Res. 2022;15(1):53-60. [65] 陈红星,刘思瑶,黄雨亭,等.不同洞缘角磨牙Ⅰ类洞复合树脂充填的应力分布[J].口腔疾病防治,2021,29(9):596-603. [66] HOUDAIFA R, ALZOUBI H, JAMOUS I. Three-Dimensional Finite Element Analysis of Worn Molars With Prosthetic Crowns and Onlays Made of Various Materials. Cureus. 2022;14(10):e30240. [67] CARDOSO LS, OLIVEIRA AA, BARBOSA GDM, et al. Evaluation of polymerization shrinkage stress and cuspal strain in natural and typodont teeth. Braz Oral Res. 2024;38:e061. [68] YAMAGUCHI S, LI H, SAKAI T, et al. CAD-CAM resin composites: Effective components for further development. Dent Mater. 2024;40(3):527-530. [69] 黄璐,钱捷.三维有限元在嵌体修复中的研究进展[J].国际口腔医学杂志,2018,45(6):728-733. [70] 佘雅鹄,张一祎,刘雨萱,等.牙尖覆盖厚度对全瓷高嵌体修复前磨牙应力分布影响的三维有限元分析[J].华西口腔医学杂志, 2019,37(6):636-641. [71] 康小翠,周珊,李晨,等.洞壁倒凹的不同处理对下颌第一磨牙嵌体修复的三维有限元分析[J].口腔医学研究,2023,39(9):827-831. [72] LAI H, LIN X, ZHANG Y, et al. Effect of different endodontic access preparations on the biomechanical behavior of lithium disilicate and resin nanoceramic onlay restorations: An in vitro and 3D finite element analysis study. J Prosthet Dent. 2024;131(1):64-74. [73] 张扬.不同洞型及材料对上颌第一前磨牙牙体缺损高嵌体修复效果的三维有限元分析[D].济南:山东大学,2023. [74] RUBILAR-HUENCHUMAN M, ORTEGA-VILLANUEVA C, GONZáLEZ IA, et al. The Effect of Photodynamic Therapy on Enterococcus spp. and Its Application in Dentistry: A Scoping Review. Pharmaceutics. 2024;16(6):16(6):825. [75] 季梦真,漆美瑶,杜珂芯,等.开髓洞型对全冠修复后隐裂牙抗力影响的三维有限元研究[J].国际口腔医学杂志,2021,48(1):41-49. [76] CHEN J, JIAN Y, CHEN S, et al. Establishment of optimal variable elastic modulus distribution in the design of full-crown restorations by finite element analysis. Dent Mater J. 2021;40(6):1403-1409. [77] 王晓晨,王剑.后牙全锆冠龈边缘预备形式的研究进展[J].国际口腔医学杂志,2023,50(4):485-490. [78] ESKIBAĞLAR M, ERDEM S, KAMAN MO. Evaluation of the effect of different rubber dam clamps on the mandibular first molar with Finite element analysis. Comput Methods Biomech Biomed Engin. 2024;27(12):1704-1713. [79] 王震,丰景,陈江海,等.全冠修复体的仿生优化设计与有限元分析[J].中华医学杂志,2022,102(33):2624-2629.
[80] 周明德.牙体预备量对前牙单层瓷全冠修复体的颜色和应力载荷性能影响的实验研究[D].西安:中国人民解放军空军军医大学,2023.
[81] HASSAN NA, ELKHADEM AH, ELKERDAWY MW, et al. Biomechanics of Different Types of PEEK as Implant Materials for Implant-Retained Mandibular Overdentures. Eur J Prosthodont Restor Dent. 2022;30(2):113-120. [82] MOIDUDDIN K, MIAN SH, ELSEUFY SM, et al. Polyether-Ether-Ketone (PEEK) and Its 3D-Printed Quantitate Assessment in Cranial Reconstruction. J Funct Biomater. 2023;14(8):429. [83] SONAYE SY, BOKAM VK, SAINI A, et al. Patient-specific 3D printed Poly-ether-ether-ketone (PEEK) dental implant system. J Mech Behav Biomed Mater. 2022;136:105510. [84] HUSSEIN MO. Biomechanical Performance of PEEK and Graphene-Modified PMMA as Telescopic Removable Partial Denture Materials: A Nonlinear 3D Finite Element Analysis. Int J Prosthodont. 2022; 35(6):793-800. [85] SULTANOĞLU EG, ELIAÇıK BBK, EROĞLU BK, et al. Evaluation of stress distributions in endodontically treated anterior incisors under occlusal and trauma-induced forces following various restoration treatments: A finite element analysis. Dent Traumatol. 2024.doi: 10.1111/edt.12977. [86] CHIEN PY, WALSH LJ, PETERS OA. Finite element analysis of rotary nickel-titanium endodontic instruments: A critical review of the methodology. Eur J Oral Sci. 2021;129(5): e12802. [87] 赵冰净,王宏,刘昌奎,等.前牙根形种植体与螺纹种植体的应力分布比较[J].北京口腔医学,2021,29(2):74-78. [88] ZHOU Y, HU Z, HU Y, et al. Patterns of stress distribution of endodontically treated molar under different types of loading using finite element models-the exploring of mechanism of vertical root fracture. J Mech Behav Biomed Mater. 2023;144:105947. [89] HAUPT F, WIEGAND A, KANZOW P. Risk Factors for and Clinical Presentations Indicative of Vertical Root Fracture in Endodontically Treated Teeth: A Systematic Review and Meta-analysis. J Endod. 2023; 49(8):940-952. [90] 张建国,刘隽,岑蓉,等.连续波充填技术对牙周组织温度影响的三维有限元分析[J].华西口腔医学杂志,2021,39(4):447-452. [91] 程侠,张修银,吴艳玲,等.不同垫底材料对髓腔固位冠抗折性能影响的三维有限元分析[J].口腔颌面修复学杂志,2021,22(1):43-47+60. [92] BRANKOVIC M, KARDYS I, STEYERBERG EW, et al. Understanding of interaction (subgroup) analysis in clinical trials. Eur J Clin Invest. 2019;49(8):e13145. [93] 赵志河.口腔生物力学专栏评述[J].医用生物力学,2023,38(5):851-853. [94] XIE B, ZHANG L, WANG Y, et al. Finite element analysis in the Dental Sciences: A Bibliometric and a Visual Study. Int Dent J. 2024:S0020-6539(24)01416-3. doi: 10.1016/j.identj.2024.08.005. [95] RICHERT R, FARGES JC, TAMIMI F, et al. Validated Finite Element Models of Premolars: A Scoping Review. Materials (Basel). 2020;13(15):3280. [96] MCCORMACK SW, WITZEL U, WATSON PJ, et al. Inclusion of periodontal ligament fibres in mandibular finite element models leads to an increase in alveolar bone strains. PLoS One. 2017;12(11):e0188707. [97] 吾斯曼江•依明,祖丽胡马尔•努尔艾合买提,赛地热娅•阿不力米提,等.三维有限元分析不同工况下牵引上颌埋伏尖牙牙周应力分布[J].中国组织工程研究,2025,29(14):2907-2913. [98] ABDELFATTAH RA, NAWAR NN, KATAIA EM, et al. How loss of tooth structure impacts the biomechanical behavior of a single-rooted maxillary premolar: FEA. Odontology. 2024;112(1):279-286. [99] LAHOUD P, FAGHIHIAN H, RICHERT R, et al. Finite Element Models: A Road to In-Silico Modeling in The Age of Personalized Dentistry. J Dent. 2024;150:105348. [100] KLEIN-FRANKE E, YOUSSEF E, KEILIG L, et al. Periapical surgery and different root obturation protocols for upper central incisor: A finite elements analysis. Ann Anat. 2024;256:152325. [101] 王静,殷金萍,林华洁,等.动态载荷下不同方式修复牙重度楔状缺损有限元分析[J].上海口腔医学,2022,31(6):615-620. [102] 张旻,张淞柏,王君俊.口腔生物力学2022年研究进展[J].医用生物力学,2023,38(5): 854-863. [103] 顾徐嘉,孟箭,李志萍.计算机三维仿真设计技术在下颌骨复杂骨折治疗中的研究进展[J].口腔医学,2023,43(4):380-384. |
[1] | Cai Yaohao, Lang Lyu, Li Hong. Assessing the bone mass of the residual alveolar ridge in the first molar for implant placement by cone-beam computed tomography [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1572-1577. |
[2] | Chen Yilong, Zhang Xu, Li Hong. Mechanical analysis of fiber post combined with different crown restorations for endodontically treated non-carious cervical lesions [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(4): 866-871. |
[3] | Akliya·Anwar, Nafisa·Gupur, Baibugafu·Yelisi, Zilalai·Gulaiti, Guzalnur·Emrayim, Nijat·Tursun. Dynamic stress analysis of maxillary sinus lifting without bone grafting and with immediate loading after bone grafting [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(30): 6416-6425. |
[4] | He Kai, Xing Wenhua, Liu Shengxiang, Bai Xianming, Zhou Chen, Gao Xu, Qiao Yu, He Qiang, Gao Zhiyu, Guo Zhen, Bao Aruhan, Li Chade. Constructing a model of degenerative scoliosis using finite element method: biomechanical analysis in etiology and treatment [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 572-578. |
[5] | Wu Zhengmin, Li Changxu, Cui Yanwei, Chen Su. Finite element analysis of stress distribution on mandibular All-on-4 implant fixed denture with different occlusion [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(28): 6020-6029. |
[6] | Fan Jiabing, Fu Xuefei, Zhang Junmei, Zhou Suodi, Mo Chaolun. Accuracy of orthodontic micro-implant placement guided by a 3D-printed guide plate [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(24): 5102-5108. |
[7] | Hu Tong, Li Xuan, Yuan Jing, Wang Wei. Different electromagnetic stimulation programs improve post-stroke dysphagia: a network Meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(24): 5224-5236. |
[8] | Mawulanjiang · Abudurenmu, Zilalai · Julaiti, Baibujiafu · Yelisi, Gulizainu · Yibulayin, Nijiati · Tuerxun. Stress analysis of angled abutments of maxillary central incisor implant crown in different implant spacing [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(16): 3351-3359. |
[9] | He Kai, Xing Wenhua, Li Feng, Liu Shengxiang, Bai Xianming, Zhou Chen, Gao Xu, Qiao Yu, He Qiang, Gao Zhiyu, Guo Zhen, Bao Aruhan, Li Chade. Application and development direction of finite element method in biomechanical analysis of thoracolumbar fractures of the spine [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(15): 3244-3252. |
[10] | Dai Huijuan, Wang Zhaoxin, Baibujiafu·Yelisi, Sun Jiangwei, Gulizainu·Yibulayin, Nijiati·Tuerxun. Biomechanical difference between resin ceramic crown and zirconia all-ceramic crown implant restorations in three occlusal relationships [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(5): 657-663. |
[11] | Shen Yurong, Nai Rentong, Zhao Ling, Liu Feigang, Yin Caoyang, Gu Yuanping, Chen Tieyi. Influence of NIC X-FILE and DENCO Pre-Shaper nickel-titanium instruments on the shaping of simulated curved canals [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 387-391. |
[12] | Li Xinru, Zhao Wenbo, Ji Yan, Teng Weiwei, Wang Yiming, Zhou Libo. Comparison of initial stability of mandibular first molar repaired with different threaded implants under immediate loading [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(22): 3445-3450. |
[13] | Zhu Lin, Gu Weiping, Wang Can, Chen Gang. Biomechanical analysis of All-on-Four and pterygomaxillary implants under different maxillary bone conditions [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(7): 985-991. |
[14] | Jiang Yifang, Cai Qimin, Chu Zhengyi, Qin Min, Shen Yurong, Gu Yuanping. Simulation analysis of stress distribution of NRT FILES in curved root canals [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(7): 1038-1042. |
[15] | Reyila·Kuerban, Xiaheida·Yilaerjiang, Chen Xin, Zilala·Julaiti, Baibujiafu·Yellisi, Nijati·Turson. Three-dimensional finite element analysis of different restorative methods for ultrashort implants [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(30): 4824-4829. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||